Chapter 18

Quality Improvement in Cardiovascular Disease Care

Edward S. Lee, Rajesh Vedanthan, Panniyammakal Jeemon, Jemima H. Kamano, Preeti Kudesia, Vikram Rajan, Michael Engelgau, and Andrew E. Moran

INTRODUCTION

This chapter reviews the diagnosis and treatment of cardiovascular disease in low- and middle-income countries (LMICs) with a view to improving the quality of care. In keeping with the Institute of Medicine’s definition of quality as the “degree to which health services for individuals and population increase the likelihood of desired health outcomes and are consistent with current professional knowledge” (Lohr 1990, 4), the focus is on studies of specific interventions and measurable health outcomes. Because the resources available to support health care delivery in LMICs are scarce, this chapter seeks to improve clinical quality by getting the most out of known effective interventions within the limits of available resources rather than recommending unproven interventions that require early-phase studies or substantial investment to scale up. Clinical quality can be improved anywhere and at any time and doing so need not be expensive.

Quality standards and measures contain principles that can be compared and shared across countries and local settings. However, quality care delivery in low-resource settings does not necessarily mean dissemination and implementation of a universal set of standards—especially those formulated for cardiovascular diseases in high-income countries (HICs). Standards and interventions should be dictated by context and community capacity. Adaptation to the local setting is necessary for achieving optimal clinical outcomes and patient satisfaction.

A conceptual framework guided this chapter. The authors specified four domains, cutting across two distinct phases of cardiovascular disease (acute versus chronic) and two levels of intervention (health system versus patient-provider) (table 18.1). Health system–level interventions include those directly targeting one or more of the six “building blocks of a health system” as defined by the World Health Organization (2007). Patient-provider-level interventions are focused on influencing patient or provider behavior. Acute phases of cardiovascular disorders, such as acute myocardial infarction, stroke, and limb ischemia, occur unpredictably. Good outcomes demand timely clinical responses, which require adequate and accessible facilities, functional transportation networks, providers prepared to treat cases that present at all hours, and patient awareness of when and how to seek medical attention. In contrast, chronic phases of cardiovascular disorders, such as diabetes mellitus, hypertension, and congestive heart failure, require screening for preclinical risk factors, systematic monitoring for complications, and substantial...
Cardiovascular, Respiratory, and Related Disorders

Patient self-care and engagement to initiate and maintain treatment adherence. Good-quality, chronic-phase care may prevent or delay onset of acute-phase manifestations, thereby preventing or delaying disability or death.

Quality interventions are examined at the health care system and patient-provider levels. The authors populated the four domains of this two-by-two framework with potential quality improvement levers based on previous knowledge of the field and examples gleaned from other chapters in this volume. Once the framework was established, a systematic literature review was conducted to identify evidence supporting specific interventions within it. The results are accompanied by detailed narratives of clinical quality improvement efforts for cardiovascular diseases, including the story of a comprehensive community-based cardiovascular disease primary prevention program in Kenya, the experience of an acute coronary syndrome (ACS) clinical pathways intervention in China, and a spotlight on mobile health (m-health) applications around the world.

SYSTEM-LEVEL INTERVENTIONS

Acute Phase

Timely intervention can dramatically improve the outcomes of acute cardiovascular disease, while delays may result in unnecessary death or disability. System-level factors affect the time to treatment in both the prehospital and hospital phases of an acute event. Before arriving at a hospital, patients educated about the cardinal symptoms of cardiac disease will seek care more quickly and be aware of nearby hospitals or ambulance transport to regional centers. Hours of service availability are critically important. For example, if a patient with an acute cardiovascular event arrives in the middle of the night at a hospital with revascularization services, staff must be available to provide those services. Lack of awareness, lack of acceptability, lack of affordability, and lack of availability are all common barriers that can delay treatment of acute events (see chapter 16 on surgery volume quality in volume 1, Weiser and Gawande 2015).

METHODOLOGY

The methodology for the systematic review, including the electronic search terms used, is detailed in annex 18A. In brief, an electronic search was conducted of the MEDLINE and EMBASE databases to capture published reports of English-language studies on cardiovascular disease care quality improvement studies carried out in LMICs from January 2000 to June 2014. The review identified 49 full text papers that reported on completed, population-based studies with clinically meaningful outcomes. These studies were selected for the review and assigned to one or more categories in the chapter framework. The chapter highlights 32 of these studies.

Table 18.1 Conceptual Framework for Quality of Care for Cardiovascular Diseases

<table>
<thead>
<tr>
<th>Level</th>
<th>Acute phase</th>
<th>Chronic phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health system</td>
<td>• Strategically locate hospitals to reduce treatment delays.</td>
<td>• Formulate and disseminate clinical practice guidelines and standards.</td>
</tr>
<tr>
<td></td>
<td>• Improve provider skills to deliver high-quality care; provide salary support for health care providers.</td>
<td>• Improve access to health care and medicines.</td>
</tr>
<tr>
<td></td>
<td>• Improve access to revascularization services.</td>
<td>• Train health care providers.</td>
</tr>
<tr>
<td></td>
<td>• Improve transportation to hospital.</td>
<td>• Provide financial support for quality improvement.</td>
</tr>
<tr>
<td></td>
<td>• Improve population awareness of acute symptoms and means to access acute care.</td>
<td>• Improve infrastructure, including health care facilities and electronic and telephonic communication.</td>
</tr>
<tr>
<td></td>
<td>• Formulate and disseminate clinical practice guidelines and standards.</td>
<td></td>
</tr>
<tr>
<td>Patient-provider</td>
<td>• Implement clinical practice guidelines using clinical pathway algorithms.</td>
<td>• Educate providers and patients.</td>
</tr>
<tr>
<td></td>
<td>• Improve hospital discharge planning and transition to chronic care.</td>
<td>• Implement clinical practice guidelines.</td>
</tr>
</tbody>
</table>

Table 18.1 Conceptual Framework for Quality of Care for Cardiovascular Diseases
effects of system-level changes may go unmeasured or unreported. Randomized comparison studies in low- and middle-income settings may not be conducted because of lack of research capacity, perception of causing unwanted delay in care delivery, “contamination” between intervention and control sites, and ethical concerns.

Alexander and others (2013) reported on a project being launched in the rural region within Tamil Nadu, India, which plans to implement a hub-and-spoke model using existing health care resources to improve the acute ST-elevation myocardial infarction (STEMI) care delivery system. Hub hospitals are capable of delivering timely percutaneous catheter-based reperfusion therapy, while spoke hospitals are primary health care facilities with or without capacity to deliver thrombolytic reperfusion therapy. Hubs and spokes are linked by privately owned professional ambulance services. After an observation phase, the hub-and-spoke program will be implemented, and primary outcomes are expected to change in response to rates of reperfusion therapy and time to coronary reperfusion.

Community-based education initiatives can prime the public by increasing awareness of clinical signs of ACS, stroke, and heart failure and enhance acceptability of acute care solutions in the community. The Kerala Acute Coronary Syndrome Program included community-based health education programs that promoted self-detection of acute coronary disease symptoms, rapid self-referral for treatment, and timely self-administration of aspirin (Prabhakaran and others 2008). The investigators concluded that improved patient awareness contributed to reductions in time-to-thrombolysis achieved by the multicomponent intervention.

No studies were found on the impact of improved geographic and temporal coverage of acute care services, including the impact of building more hospitals within underserved areas or making revascularization more widely available.

Chronic Phase

Most studies in the system-level, chronic-phase category examined the expansion of health insurance coverage (table 18.3). Two studies evaluated the health impact of the Seguro Popular insurance that was rolled out in

| Table 18.2 Selected Studies on System-Level, Acute-Phase Quality Improvement Interventions |
|--------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Quality improvement intervention | Study | Country | Study design | Sample | Observation interval | Quality measures | Results |
| National health care reform | Nazzal and others 2008 | Chile | Retrospective, multicenter | STEMI patients from 10 hospitals that perform thrombolysis as main perfusion therapy | Not reported | Global in-hospital mortality; evidence-based prescribing for patients treated with thrombolysis | 10 percentage point absolute increase in use of thrombolysis (50.0% vs. 60.5%); 3.8 percentage point absolute reduction in in-hospital mortality of patients treated with thrombolysis (10.6% vs. 6.8%); 3.4 percentage point absolute reduction in global in-hospital mortality (12.0% vs. 8.6%); adjusted odds ratio for in-hospital mortality, 0.64 |
| Organization of hospitals in hub-and-spoke model | Alexander and others 2013 | India | Prospective, multicenter, community-based study | Plan to enroll 1,500 consecutive STEMI patients at participating institutions | Patients to be enrolled over 9 months and followed for 1 year | Before-and-after study of the use of reperfusion therapy, time to reperfusion | Not yet available |
| Community education program regarding ACS symptoms and treatments | Prabhakaran and others 2008 | India | Prospective, nonrandomized study | 1,033 ACS patients in 34 hospitals; mean age, 58; males, 71%–78% of total | Follow-up: inpatient hospitalization | No specific outcomes related to community education program | No specific outcomes related to community education program |

Note: ACS = acute coronary syndrome; STEMI = ST-elevation myocardial infarction.
2002 as part of Mexico’s national universal health insurance plan. Seguro Popular covered approximately 50 million low-income people who had no formal health insurance—often because working family members participated in the informal economy. Based on data gathered in Mexican national health and nutrition surveys, Bleich and others (2007) found that, compared with matched hypertensive adults without insurance, Seguro Popular enrollees had 1.5-fold higher odds of receiving hypertension treatment and 1.4-fold higher odds of having controlled blood pressure. A similar study of low-income diabetic patients found those with Seguro Popular insurance were more likely to receive regular blood glucose control monitoring and maintain adequate glucose control compared with their matched, uninsured counterparts (Sosa-Rubi, Galarraga, and Lopez-Ridaura 2009). In rural Nigeria, hypertensive patients living in a district where community-based health insurance was available had significantly lower systolic and diastolic blood pressures, changes not observed in the control group without insurance (Hendriks and others 2014). In rural China, hypertensive patients receiving subsidies to defer medication costs had a 9 percent absolute increase in medication adherence and significantly lower annual out-of-pocket medical costs (Yu, Zhang, and Wang 2013).

System-level quality improvement efforts can lead to measurable improvements in health status in patients with chronic cardiovascular disease. These studies also demonstrate that the health impact of system-level changes can be rigorously evaluated. Researchers can simulate randomization through natural experiments, propensity score matching, or comparison of geographic areas or facilities with and without the intervention. Stepped-wedge trials introduce interventions to couple stepwise active and systematic program implementation with evaluation (Hemming and others 2015). As in the Seguro Popular studies, repeated population-based surveys can be leveraged to measure changes in chronic cardiometabolic disease risk factors and outcomes.

Table 18.3 Selected Studies on System-Level, Chronic-Phase Quality Improvement Interventions

<table>
<thead>
<tr>
<th>Quality improvement intervention</th>
<th>Study</th>
<th>Country</th>
<th>Study design</th>
<th>Sample</th>
<th>Observation interval</th>
<th>Quality measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrollment in Seguro Popular</td>
<td>Bleich and others 2007</td>
<td>Mexico</td>
<td>Cross-sectional, 2005 Mexican national survey</td>
<td>Adults with hypertension; 1,065 uninsured matched with 1,065 insured</td>
<td>Not reported</td>
<td>Self-reported hypertension treatment and control</td>
<td>Adults enrolled in Seguro Popular had higher rates of hypertension treatment (odds ratio 1.5) and controlled blood pressure (odds ratio 1.49)</td>
</tr>
<tr>
<td>Enrollment in Seguro Popular</td>
<td>Sosa-Rubi, Galarraga, and Lopez-Ridaura 2009</td>
<td>Mexico</td>
<td>Cross-sectional, 2005–06 Mexican national survey</td>
<td>Adults with diabetes; 425 insured matched with 1,029 uninsured</td>
<td>Not reported</td>
<td>Process outcomes and biological outcomes (hemoglobin A1c)</td>
<td>Adults enrolled in Seguro Popular more likely to have appropriate glucose control (average treatment effect 0.056)</td>
</tr>
<tr>
<td>Community-based health insurance</td>
<td>Hendriks and others 2014</td>
<td>Rural Nigeria</td>
<td>Prospective, nonrandom, nonblind; one geographic area with intervention, one control area</td>
<td>Adults with hypertension</td>
<td>Intervention and follow-up for one year</td>
<td>Blood pressure, measured by trained interviewers</td>
<td>Systolic blood pressure decreased by 10.4 mmHg vs. 5.2 mmHg and diastolic blood pressure decreased by 4.3 mmHg vs. 2.2 mmHg in intervention group</td>
</tr>
<tr>
<td>Medication subsidy program providing full coverage of antihypertension medications</td>
<td>Yu, Zhang, and Wang 2013</td>
<td>Rural China</td>
<td>Prospective cohort study with propensity-score-matched controls</td>
<td>Low-income, hypertensive adults taking more than one antihypertensive medication (93% taking more than three)</td>
<td>Intervention and follow-up for 18 months</td>
<td>Blood pressure, medication adherence, and health care costs</td>
<td>Intervention arm had a 9 percentage point absolute increase in medication adherence (75% vs. 68%) and lower annual out-of-pocket medical costs overall</td>
</tr>
</tbody>
</table>

Note: mmHg = millimeter of mercury, a measure of pressure.
Quality improvement studies will be most feasible where key outcomes are part of, or added to, ongoing surveys. Many cardiovascular disease patients remain untreated or incompletely treated with standard oral medications for secondary prevention (Yusuf and others 2011). System-level policies to improve the availability and reduce the costs of essential preventive medicines have the potential to extend effective prevention to many more of these patients. No studies were found on the impact of essential medicines designations or pharmaceutical market regulations on the quality of clinical care for cardiovascular diseases (see chapter 8 in this volume, Dugani and others 2017).

In Sub-Saharan Africa, the substantial infrastructure investment that turned the tide of the human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) epidemic is now being leveraged for chronic noncommunicable disease management. Groups like the Kenya-based Academic Model Providing Access to Healthcare (AMPATH) have leveraged the infrastructure established for chronic care to improve hypertension control in the communities they serve (box 18.1).

Box 18.1

Systems and Individuals: The AMPATH Chronic Disease Management Experience in Kenya

In Sub-Saharan Africa, cardiovascular disease (CVD) is the leading cause of death among individuals older than 30 years (Gaziano and others 2006). In Kenya, atherosclerotic CVD, particularly stroke (Etyang and others 2014), and CVD risk factors, particularly hypertension (Kayima and others 2013), are increasing. To address the rise in non-communicable diseases, Kenya formed the Division of Noncommunicable Diseases in the Directorate of Preventive and Promotive Health Services within the Ministry of Health. This division has developed a strategic plan for noncommunicable diseases, including hypertension; designated clear targets; and recommended evidence-based interventions.

However, widespread implementation of programs is still lacking. The infrastructure for hypertension management is challenging. Human resources for health are insufficient (WHO 2013), and physicians have traditionally managed hypertension. Stockouts of even the essential medicines on the national formulary are frequent (Manji and others 2012). The availability of hypertension medicines is even less reliable, especially in rural areas. In addition, there is a profound lack of facilities, supplies, and equipment, including sphygmanometers.

The Academic Model Providing Access to Healthcare (AMPATH)—a collaboration between the Moi University College of Health Sciences, the Moi Teaching and Referral Hospital, and a consortium of North American universities led by Indiana University—has sought to address both system-level and individual-level factors in an attempt to improve access to high-quality, comprehensive, coordinated, and sustainable care for CVD risk factors such as hypertension and diabetes. AMPATH has established a human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) care system in western Kenya that has served more than 160,000 patients (AMPATH 2015; Einterz and others 2007). It has also developed a comprehensive chronic disease management program, focusing initially on hypertension and diabetes (Bloomfield and others 2011). The program has several goals:

• Achieve population-wide screening for hypertension and diabetes
• Engage community resources and governance structures
• Achieve geographic decentralization of care services
• Redistribute tasks
• Ensure a consistent supply of essential medicines
• Improve the physical infrastructure of rural health facilities
• Develop an integrated health record to be used at all levels of the health system
• Use mobile health initiatives strategically.

Bringing together all of these components, AMPATH has created an integrated system of chronic disease treatment and prevention services. Nurses in rural dispensaries have received...
PATIENT-PROVIDER-LEVEL INTERVENTIONS

Acute Phase

ACS and acute stroke care have a remarkably strong evidence base, supported by randomized controlled trials of life-saving medications and reperfusion procedures (table 18.4). Professional societies have endorsed clinical practice guidelines that propose to set international quality standards for acute care. However, these quality standards are incompletely implemented even in high-income settings (Aliprandi-Costa and others 2011; Berwanger and others 2012; Cabana and others 1999; Du and others 2014; Fox and others 2002; Hoekstra and others 2002; Pearson, Goulart-Fisher, and Lee 1995). For years, the case for initiatives to improve the quality of ACS care was based on observations of quality gaps in registry studies; only recently has evidence emerged from randomized controlled trials (Flather and others 2011; Tu and others 2009).

Modeling studies have projected that treating ACS patients according to the recommendations of clinical guidelines is cost-effective in LMICs (Megiddo and others 2014; Wang and others 2014; see chapter 8 in this volume [Dugani and others 2017]). However, the gap between current and optimal ACS care appears to be even wider in LMIC hospitals than in HIC hospitals (Berwanger and others 2012; Du and others 2014; Wang and others 2012; Wang and others 2014; Xavier and others 2008). The Kerala Acute Care Syndrome Registry, which studied 25,748 consecutive ACS admissions in hospitals in Kerala, India, over two years, found that 41 percent of STEMI patients reached the health care facility six hours or more after symptom onset (Mohanan and others 2013). Only 41 percent and 13 percent of STEMI patients received reperfusion therapy using thrombolytics or percutaneous coronary interventions, respectively. The study also demonstrated that optimal in-hospital and discharge medical care were delivered in only 40 percent and 46 percent of admissions, respectively, with rural hospitals performing worse than urban ones (Huffman and others 2013). Patients receiving optimal in-hospital medical therapy reported a 21 percent lower rate of major adverse in-hospital cardiovascular events.

Adopting HIC guidelines for LMICs offers a great opportunity both for implementing quality improvement standards and for benchmarking significant improvements in practice and outcomes. The ACS quality improvement studies identified in the review showed some improvements in measures of clinical process, but, like studies in HICs, only equivocal clinical improvements were found.

Berwanger and others (2012) randomized large urban hospitals in Brazil into those offering a multifaceted quality improvement program with educational material, reminders, algorithms, and training visits and those offering usual care. The intervention group had 2.64 higher odds of receiving evidence-based ACS therapy within the first 24 hours following symptom onset. There were no changes, however, in 30-day mortality or in-hospital cardiovascular events. Du and others (2014) randomized large urban Chinese hospitals to implement a U.S.-guidelines-based ACS pathway, along with periodic clinical performance audits and feedback throughout the intervention period (figure 18.1). Hospitals in the intervention arm showed higher rates of discharge for recommended therapies, but no difference in other indicators, including reperfusion in STEMI cases within 12 hours of symptom onset, door-to-needle time, door-to-balloon time, or high-risk patients undergoing angiography. As in Berwanger and others (2012), there were...

Box 18.1 (continued)

specialized training and simple clinical algorithms to manage uncomplicated cases of hypertension and diabetes. Community health workers have received structured training to provide health education, link patients to hypertension and diabetes care, and improve retention. Rural clinicians and community health workers are using handheld devices, equipped with clinical decision support and record-keeping functions, to improve the quality of care and the efficiency of follow-up. Novel community-based, revolving-fund pharmacies (Manji and others 2012) and provider supply networks have been developed to increase the availability of chronic disease medications. The program has also launched a community-based outpatient health insurance program to improve affordability. Finally, implementation research is being conducted to determine which components are or are not working and why to generate lessons for the program and for programs in other low-resource settings worldwide.

CRRD_327-348.indd 332 13/11/17 5:20 PM
Table 18.4 Selected Studies of Patient-Provider-Level, Acute-Phase Quality Improvement Interventions

<table>
<thead>
<tr>
<th>Quality improvement intervention</th>
<th>Study</th>
<th>Country</th>
<th>Study design</th>
<th>Sample</th>
<th>Observation interval</th>
<th>Quality measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifaceted quality improvement intervention with educational materials, reminders, algorithms, and training visits</td>
<td>Berwanger and others 2012</td>
<td>Brazil</td>
<td>Prospective, cluster randomized controlled, multicenter study; 17 hospitals randomized to intervention and 17 to routine practice</td>
<td>1,150 ACS patients in 34 public hospitals; mean age, 62</td>
<td>Follow-up of 30 days</td>
<td>Evidence-based therapy (aspirin, clopidogrel, anticoagulants, and statins) for ACS within first 24 hours</td>
<td>Intervention group more likely to receive all eligible acute and discharge medications and higher adherence; no change in 30-day all-cause mortality or in-hospital cardiovascular events</td>
</tr>
<tr>
<td>Clinical pathways approved by the American College of Cardiology and American Heart Association</td>
<td>Du and others 2014</td>
<td>China</td>
<td>Prospective, cluster randomized controlled, multicenter study; regional and tertiary urban hospitals with more than 100 ACS patients annually; 32 hospitals in early intervention and 38 hospitals in late intervention</td>
<td>3,500 ACS patients; mean age, 64; males, 67%–72% of total</td>
<td>Follow-up: inpatient hospitalization</td>
<td>Primary outcomes were correct final diagnosis, thrombolysis or angioplasty within 12 hours, door-to-needle time, door-to-balloon time, high-risk patients undergoing angiography, low-risk patients undergoing functional testing, discharge on correct medications, and length of hospital stay</td>
<td>11.6 percentage point absolute increase in discharge rates on recommended therapies (relative risk 1.23); no difference in other primary outcomes, death, or major cardiovascular events</td>
</tr>
<tr>
<td>Education program for physicians and community members in detection and optimal management of ACS</td>
<td>Prabhakaran and others 2008</td>
<td>India</td>
<td>Prospective, nonrandomized study; 34 hospitals treating ACS patients in Kerala region</td>
<td>1,033 ACS patients; mean age 58; males, 71%–78% of total</td>
<td>Follow-up: inpatient hospitalization</td>
<td>Use of aspirin, heparin, beta blockers, lipid-lowering agents, calcium channel blockers, time to thrombolysis</td>
<td>Absolute decreases of 43 minutes in symptom-to-door time, 11 minutes in door-to-thrombolysis, and 55 minutes in time-to-thrombolysis; significant increase in use of aspirin, heparin, beta blockers, lipid-lowering agents; reduction in use of calcium channel blockers</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guideline-based structured case program for secondary stroke prevention</td>
<td>Peng and others 2014</td>
<td>China</td>
<td>Prospective, cluster randomized controlled, multicenter study; large regional or tertiary hospitals; 23 hospitals in intervention and 24 in control</td>
<td>1,287 inpatient stroke patients; mean age, 60–61; males, 67%–69% of total</td>
<td>Follow-up of one year</td>
<td>Medication adherence to secondary prevention</td>
<td>Higher adherence to statins (56% vs. 33%); no difference in antiplatelet, antihypertensive, or diabetes mellitus drugs; no difference in composite endpoint (new stroke, ACS, and all-cause death)</td>
</tr>
</tbody>
</table>

Note: ACS = acute coronary syndrome.
no significant differences in mortality or cardiovascular
events. Prabhakaran and others (2008) enrolled 34 hos-
pitals in the Kerala region of India to serve as their
own controls in a pre- and postintervention design.
After the multifaceted quality improvement inter-
vention, there was a significant median reduction in
time-to-thrombolysis of 54 minutes—from 193 to 139
minutes—and a significant increase in the use of
evidence-based medications.

In sum, selected studies of quality improvement pro-
grams for ACS and stroke care found improvements in
some measures of clinical process, but not in clinical
outcomes—similar to the pattern commonly found in
programs in HICs. Even regarding surrogate measures of
process, quality improvement studies yielded variable
results. It may be that success depends on the support of
health care providers and administrators and tailoring to
the specific context of the participating health care sys-
tem (that is, the availability of treatments and financial
protection for patients). Lessons learned from these

programs may be helpful for the design of future
patient-provider-level studies on cardiovascular disease
(box 18.2). Despite their limitations, these ambitious
studies demonstrated that complex quality improve-
ment programs can be implemented in the hospital set-
ing in middle-income countries. No studies were found
measuring the impact of physician education on diag-
nostic accuracy or clinical decision making related to
acute cardiovascular disorders.

Chronic Phase

Adherence to life-saving medications and lifestyle
changes is suboptimal worldwide, regardless of country
income level (Yusuf and others 2011). Since the over-
whelming majority of chronic-phase cardiovascular
disease patients live in LMICs, where health care
resources are limited, optimizing low-cost primary
and secondary prevention interventions is critical.
Numerous studies have been conducted on a variety of
Box 18.2

Acute Care Quality Improvement in Middle-Income Countries: Lessons from the CPACS Study in China

Three acute coronary syndrome (ACS) clinical quality improvement programs were identified, including the second phase of the Clinical Pathways for Acute Coronary Syndromes (CPACS) study conducted in China (Berwanger and other 2012; Du and others 2014; Prabhakaran and others 2008). Following the intervention, CPACS collected data from structured health care provider surveys in all 75 hospitals participating in the initiative and from in-depth semistructured interviews with study coordinators and leaders in 10 of the hospitals. These data were analyzed using quantitative and qualitative methods. The analysis found that provider-level, system-level, and patient-level factors—government and administrative support, hospital resources, and patient health insurance coverage and lack of financial protection—all limited the intervention’s impact. Several lessons emerged from the CPACS experience.

Engaging health care providers and hospital administrators. Not all diagnostic and clinical practice guidelines formulated in high-income countries will apply to the local context in low- and middle-income countries. CPACS engaged providers in study hospitals early in the process of planning to involve them as stakeholders and incorporate their recommendations. More than 80 percent of providers attended program training sessions and reported using the ACS pathways in clinical practice, and providers had a generally positive view of the program’s objectives. In China, hospital administrators and local governments are powerful arbiters of hospital priorities. Failure to gain support from these high-level officials limited successful implementation of the clinical pathways in some hospitals. For example, hospitals with less administrative buy-in assigned responsibility for collecting and analyzing CPACS data and for following up with patients to students and junior physicians without scaling back their regular academic and administrative obligations.

Overcoming patient-level obstacles. Community education about the signs, symptoms, and treatment of acute cardiovascular disease may be difficult to carry out in large-scale, multisite, hospital-based studies. CPACS found that patient factors limited the effectiveness of the intervention. Patients’ insurance circumscribed the treatments reimbursed, and many patients were underinsured or uninsured and found it difficult or impossible to pay out of pocket for treatments considered part of the quality care program. Limited knowledge of coronary heart disease negatively affected patients’ participation in discussions regarding informed consent and limited their willingness to pursue long-term secondary prevention after being discharged from the hospital.

Interventions to improve the quality of chronic-phase cardiovascular diseases in LMICs (table 18.5). Because patients are ideally prescribed several standard daily oral medications for primary or secondary prevention of cardiovascular disease, achievement of medication adherence, sometimes lifelong, is a key challenge for quality health care worldwide (figure 18.2). Most of the interventions reviewed were related to chronic medication adherence, specifically the use of fixed-dose combination pills, health care delivery supported by mobile communication technology, and task-shifting.

Combination Pills

Many patients with cardiovascular disease are prescribed multiple daily medications. As the number of medications increases, the probability that patients will take all of the prescribed pills declines. For this reason, combining multiple medications into a single pill can improve adherence. Combined low doses of multiple medications in place of higher doses of a single medication also should lower the frequency of side effects.

Thom and others (2013) randomized persons at high risk of cardiovascular disease (CVD) living in India (one of four countries studied) to receive combination pills or the usual multiple-pill therapy. After a mean follow-up of about 15 months, participants taking the combination pills had 25 percent higher absolute adherence and small but significant reductions in both systolic blood pressure and low-density lipoprotein compared with participants randomized to receive
<table>
<thead>
<tr>
<th>Quality improvement intervention</th>
<th>Study</th>
<th>Country or region</th>
<th>Disease</th>
<th>Study design</th>
<th>Sample</th>
<th>Observation interval</th>
<th>Quality measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination pills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-dose combination medications</td>
<td>Thom and others 2013</td>
<td>India</td>
<td>CVD, secondary prevention</td>
<td>Prospective, randomized, open-label, multicenter, multinational, blind endpoint trial; 501 patients in intervention, 499 in usual care</td>
<td>Participants with CVD or five-year CVD risk of at least 15%; in all population, mean age, 62 years; males, about 80% of total</td>
<td>Median intervention and follow-up of 15 months</td>
<td>Self-reported adherence to all of aspirin, statin, and two or more medications</td>
<td>25% absolute higher adherence to all four medications (ratio of 1.4); small but statistically significant decreases in systolic blood pressure (−2.6 mmHg) and LDL (6.7 mg/dL)</td>
</tr>
<tr>
<td>CVD prevention protocol, including low-dose combination pill with lifestyle modification</td>
<td>Zou and others 2014</td>
<td>Rural China</td>
<td>CVD, secondary prevention</td>
<td>Prospective, nonrandomized, single-center study; pilot before RCT; 153 patients in intervention, no control</td>
<td>Subjects ages 40–74 years with a calculated 10-year CVD risk of 20% or more; mean age 71 years; males, 71% of total</td>
<td>Intervention and follow-up for 3 months</td>
<td>Blood pressure, percent taking CVD medications, self-reported adherence to smoking cessation and salt intake, appointment rates</td>
<td>Significantly higher rates of subjects taking CVD preventive drugs (73% vs. 84%) and reduction in smoking rates (38% vs. 35%); no changes in salt intake or measured blood pressure</td>
</tr>
<tr>
<td>Low-dose combination pill, “polycap”</td>
<td>Yusuf and others 2009</td>
<td>India</td>
<td>CVD</td>
<td>Prospective, double-blind, multicenter trial; 2,031 individuals randomized to eight groups; 412 in intervention, about 200 in each of eight groups</td>
<td>Subjects ages 45–80 years without previous CVD but one risk factor</td>
<td>Intervention for 12 weeks; follow-up for 4 weeks post-intervention</td>
<td>Blood pressure, LDL, heart rate, urinary 11-dehydrothromboxane B2</td>
<td>Significant reductions in systolic and diastolic blood pressure (by 7.4 and 5.6 mmHg, respectively) compared with groups not receiving antihypertensives; significant reduction in LDL (by 0.7 millimole per liter) compared with groups not taking simvastatin</td>
</tr>
<tr>
<td>Full-dose pills with potassium vs. low-dose combination pills</td>
<td>Yusuf and others 2012</td>
<td>India</td>
<td>CVD</td>
<td>Prospective, randomized, multicenter trial; 257 patients in full-dose group, 261 in low-dose group</td>
<td>Subjects older than age 40 years with blood pressure higher than 130/90 on two consecutive occasions or on antihypertensive medications and with cardiovascular disease or high-risk diabetes</td>
<td>Intervention for 8 weeks; follow-up for 4 weeks post-intervention</td>
<td>Blood pressure, heart rate, serum lipids, serum and urinary potassium, and tolerability</td>
<td>Significant reductions in systolic and diastolic blood pressure (by 2.8 mmHg and 1.7 mmHg, respectively); significant reductions in both total cholesterol and LDL; similar rates of discontinuation</td>
</tr>
</tbody>
</table>

Table 18.5 Selected Studies of Chronic-Phase, Patient-Provider-Level Interventions
<table>
<thead>
<tr>
<th>Quality improvement intervention</th>
<th>Study</th>
<th>Country or region</th>
<th>Disease</th>
<th>Study design</th>
<th>Sample</th>
<th>Observation interval</th>
<th>Quality measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile phone messaging intervention</td>
<td>Ramachandran and others 2013</td>
<td>India</td>
<td>Diabetes</td>
<td>Prospective, multicenter, RCT; 271 subjects in intervention, 266 in control</td>
<td>Men with impaired glucose tolerance; mean age 45–46 years</td>
<td>Mean intervention and follow-up for 20.2 months</td>
<td>Progression to diabetes</td>
<td>9 percentage point absolute reduction in progression to diabetes (18% vs. 27%, hazard ratio 0.64); improved dietary adherence (hazard ratio 0.48)</td>
</tr>
<tr>
<td>SMS message about diet, exercise, medication</td>
<td>Goodarzi and others 2012</td>
<td>Iran, Islamic Rep.</td>
<td>Diabetes</td>
<td>Prospective, RCT; 43 subjects in intervention, 38 in control</td>
<td>Subjects with type 2 diabetes; mean age, 51–56 years; males, 21%–24% of total</td>
<td>Intervention and follow-up for 3 months</td>
<td>Laboratory results and questionnaire</td>
<td>0.9 percentage point absolute decrease in hemoglobin A1c; significant decreases in total cholesterol and microalbumin; significant improvement in knowledge, attitude, practice, and self-efficacy</td>
</tr>
<tr>
<td>SMS regarding medications and healthy lifestyle changes</td>
<td>Shetty and others 2011</td>
<td>India</td>
<td>Diabetes</td>
<td>Prospective, RCT; 110 subjects in intervention, 105 in control</td>
<td>Subjects with diabetes; mean age, 50 years</td>
<td>Intervention and follow-up for 1 year</td>
<td>Hemoglobin A1c, fasting plasma glucose, lipids</td>
<td>Significant improvement in fasting plasma glucose (185 vs. 166); no significant difference in hemoglobin A1c</td>
</tr>
<tr>
<td>Automated phone calls and home blood pressure monitors; e-mail alerts to providers</td>
<td>Piette and others 2012</td>
<td>Honduras; Mexico</td>
<td>Hypertension</td>
<td>Prospective, RCT; primary care clinics; 99 subjects in intervention, 101 in control</td>
<td>Subjects with uncontrolled hypertension; mean age, 58 years; males, 33% of total</td>
<td>Intervention and follow-up for 6 weeks</td>
<td>Blood pressure</td>
<td>No significant effect on systolic blood pressure, but in subgroup analysis, reduction in systolic blood pressure (by 8.8 mmHg) in low-literacy group</td>
</tr>
<tr>
<td>Education, counseling, and medical adjustment by nurses via phone calls</td>
<td>Ferrante and others 2010; GESICA Investigators 2005</td>
<td>Argentina</td>
<td>Congestive heart failure</td>
<td>Prospective, multicenter, RCT; 760 patients in intervention, 758 in usual care</td>
<td>Outpatients with stable chronic heart failure; mean age, 65 years; males, 71% of total</td>
<td>Intervention for 1 year; follow-up for 4 years</td>
<td>All-cause mortality and heart failure hospitalization</td>
<td>2 percentage point absolute reduction in composite outcome of mortality or heart failure hospitalization at 3 years (relative risk 0.88); mostly driven by 7 percentage point absolute reduction in heart failure hospitalization at 3 years (relative risk 0.72)</td>
</tr>
</tbody>
</table>
Table 18.5 Selected Studies of Chronic-Phase, Patient-Provider-Level Interventions (continued)

<table>
<thead>
<tr>
<th>Quality improvement intervention</th>
<th>Study</th>
<th>Country or region</th>
<th>Disease</th>
<th>Study design</th>
<th>Sample</th>
<th>Observation interval</th>
<th>Quality measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated SMS message reminders</td>
<td>Khonsari and others 2014</td>
<td>Malaysia</td>
<td>CVD, secondary prevention</td>
<td>Prospective, open-label, single-center, RCT; ACS patients at tertiary teaching hospital; 31 patients in intervention, 31 in control</td>
<td>Participants admitted for ACS; mean age, 58 years; males, 86% of total</td>
<td>Intervention and follow-up for 2 months</td>
<td>Adherence to cardiac medications</td>
<td>Higher medication adherence rate (64.5% vs. 12.9%); intervention group trended toward lower hospital readmission rates (0 vs. 12.9%)</td>
</tr>
<tr>
<td>Telephone-based peer support</td>
<td>Rotheram-Borus and others 2012</td>
<td>South Africa</td>
<td>Diabetes</td>
<td>Prospective, single-center, nonrandomized, clinical trial; 22 subjects in intervention</td>
<td>Subjects with diabetes; mean age, 53; all females</td>
<td>Intervention for 3 months; follow-up at end of study and at 3 months postintervention</td>
<td>Blood glucose, body mass index, coping and social support</td>
<td>No significant improvements in clinical measures; blood glucose and diastolic blood pressure increased; social support and coping abilities increased</td>
</tr>
<tr>
<td>Task-shifting</td>
<td>Counseling by pharmacists, telephone reminders</td>
<td>Ramanath and others 2012</td>
<td>India</td>
<td>Hypertension</td>
<td>Prospective, RCT; 26 subjects in intervention, 26 in control</td>
<td>Subjects with hypertension; males, 62%–81% of total</td>
<td>Intervention and follow-up for 1 month</td>
<td>Blood pressure, self-reported medicine adherence</td>
</tr>
<tr>
<td></td>
<td>Nurse-led clinic</td>
<td>Kengne and others 2009</td>
<td>Sub-Saharan Africa</td>
<td>Hypertension</td>
<td>Prospective, nonrandomized, no-control study; 5 urban and rural clinics; 454 subjects</td>
<td>Subjects with hypertension; mean age, 53–58 years; males, 41%–55% of total</td>
<td>Median intervention and follow-up for 6 months</td>
<td>Blood pressure</td>
</tr>
<tr>
<td></td>
<td>Pharmacist-led hypertension clinic</td>
<td>Erhun, Aghani, and Bolaji 2005</td>
<td>Nigeria</td>
<td>Hypertension</td>
<td>Prospective, randomized cohort trial; state comprehensive health center; 51 subjects</td>
<td>Subjects with uncontrolled hypertension; mean age, 61; males, 29% of total</td>
<td>Intervention and follow-up for 1 year</td>
<td>Blood pressure</td>
</tr>
<tr>
<td></td>
<td>Home visits</td>
<td>Adeyemo and others 2013</td>
<td>Nigeria</td>
<td>Hypertension</td>
<td>Prospective, RCT; rural and urban populations; 280 subjects in intervention, 264 in control</td>
<td>Subjects with hypertension; mean age, 63 years; males, 51%–53% of total</td>
<td>Intervention and follow-up for 6 months</td>
<td>Medication adherence via pill counting or urine test</td>
</tr>
<tr>
<td>Quality improvement intervention</td>
<td>Study</td>
<td>Country or region</td>
<td>Disease</td>
<td>Study design</td>
<td>Sample</td>
<td>Observation interval</td>
<td>Quality measures</td>
<td>Results</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>---------</td>
<td>--------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Family-based home health education for patients and training of general practitioners</td>
<td>Jafar and others 2009</td>
<td>Pakistan</td>
<td>Hypertension</td>
<td>Prospective, cluster RCT; geographic census-based clusters; 629 subjects in intervention, 640 in control</td>
<td>Subjects with hypertension; mean age, 54 years; males, 37% of total</td>
<td>Intervention and follow-up for 2 years</td>
<td>Systolic blood pressure</td>
<td>Decrease in systolic blood pressure (by 10.8 mmHg vs. 5.8 mmHg)</td>
</tr>
<tr>
<td>Follow-up by nurses</td>
<td>Nesari and others 2010</td>
<td>Iran, Islamic Rep.</td>
<td>Diabetes</td>
<td>Prospective, RCT</td>
<td>Subjects with diabetes; mean age, 51 years; males, 20% in control and 37% in intervention</td>
<td>Intervention and follow-up for 3 months</td>
<td>Hemoglobin A1c</td>
<td>1.87 percentage point absolute decrease in hemoglobin A1c in intervention group; no change in control group; intervention group also saw significantly higher adherence to diet, exercise, and glucose monitoring</td>
</tr>
<tr>
<td>Guideline implementation</td>
<td>Oureshi and others 2007</td>
<td>Pakistan</td>
<td>Hypertension</td>
<td>Prospective, cluster RCT; communities in Karachi; 100 subjects in intervention, 100 in control</td>
<td>Subjects with hypertension; mean age, 55 years; males, 38% of total</td>
<td>Intervention and follow-up for 6 weeks</td>
<td>Medication adherence</td>
<td>16 percentage point absolute increase in patient medication adherence (48.1% vs. 32.4%)</td>
</tr>
<tr>
<td>Clinical decision support system</td>
<td>Anchala and others 2015</td>
<td>India</td>
<td>Hypertension</td>
<td>Prospective, cluster RCT; eight primary health clusters in each arm; 845 subjects in intervention, 793 in control</td>
<td>Subjects with hypertension; mean age, 54 years; males, 49%–52% of total</td>
<td>Intervention and follow-up for 12 months</td>
<td>Systolic blood pressure, cost-effectiveness</td>
<td>Absolute decrease in systolic blood pressure (by 6.59 mmHg); cost-effectiveness ratio of US$96.01 per systolic blood pressure reduction in intervention and US$36.57 in control</td>
</tr>
</tbody>
</table>

Table 18.5 Selected Studies of Chronic-Phase, Patient-Provider-Level Interventions (continued)
Table 18.5 Selected Studies of Chronic-Phase, Patient-Provider-Level Interventions (continued)

<table>
<thead>
<tr>
<th>Quality improvement intervention</th>
<th>Study</th>
<th>Country or region</th>
<th>Disease</th>
<th>Study design</th>
<th>Sample</th>
<th>Observation interval</th>
<th>Quality measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education of general practitioners regarding management guidelines including meetings, reminders, medical record summary, and patient result cards</td>
<td>Reuters and others 2012</td>
<td>Asia</td>
<td>Diabetes</td>
<td>Prospective, multinational, cluster RCT; 50 subjects in intervention, 49 in control</td>
<td>Asia-Pacific general practitioners; mean age, 44 years; males, 50%–57% of total</td>
<td>Intervention and follow-up for 12 months</td>
<td>Patient hemoglobin A1c, blood pressure, lipids</td>
<td>No significant difference in hemoglobin A1c or other glycemic indexes</td>
</tr>
<tr>
<td>Guidelines for diabetes and hypertension incorporated into each chart for providers</td>
<td>Steyn and others 2013</td>
<td>South Africa</td>
<td>Diabetes</td>
<td>Prospective, multicenter, RCT; public sector community health centers; nine centers in intervention, nine in control</td>
<td>Subjects with diabetes or hypertension; 690 in intervention, 686 in control; mean age 58–61 years; males, 72%–83% of total</td>
<td>Intervention and follow-up for 1 year</td>
<td>Blood pressure, A1c</td>
<td>No effect; fewer than 60% of guideline forms used</td>
</tr>
</tbody>
</table>

Note: ACS = acute coronary syndrome; CVD = cardiovascular disease; LDL = low-density lipoprotein; mg/dL = milligram per deciliter; mmHg = millimeters of mercury, a measure of pressure; RCT = randomized controlled trial; SMS = short message service.
multiple-pill treatment. Yusuf and others (2009) also found small but significant improvements among Indian subjects at risk for CVD when randomized to receive a combination pill containing multiple blood pressure medications, statins, and aspirin. A follow-up study by Yusuf and others (2012) showed that high-dose combination pills improved blood pressure and lipid control in high-risk Indian subjects compared with low-dose ones with similar rates of tolerability. Zou and others (2014) found that starting high-risk rural Chinese participants on combination pills achieved an 11 percent higher absolute adherence rate.

These trials show that combination pills can improve medication adherence and improve risk factor control in high-risk CVD patients. For this reason, efforts to approve and manufacture combination medications are underway (FDA 2014).

Mobile Communication Technology
Mobile technologies such as cell phones are becoming increasingly available in LMICs and are playing an important role in health promotion (box 18.3). Twelve studies were identified on the role of m-health in the prevention and treatment of diabetes, hypertension, heart failure, and coronary artery disease. Although not every study demonstrated a significant improvement in clinical care quality, these studies suggest that m-health via text messages and phone calls can be a useful tool for managing chronic cardiovascular conditions in LMICs.

Task-Shifting
Task-shifting refers to the rational redistribution of tasks among health care teams, often from a few highly trained health providers to a larger contingent of providers with less training (see chapter 17 in this volume, Joshi and others 2017; WHO 2008). Six studies were identified evaluating task-shifting for improving patient adherence to prescribed medications. Some studies coupled task-shifting with increased access to affordable or free medications (Erhun, Agbani, and Bolaji 2005; Kengne and others 2009), or family-based home health education and supplemental training of general practitioners (Jafar and others 2009).

Five task-shifting studies targeted hypertensive patients. Kengne and others (2009) carried out a large

Figure 18.2 Number of Drugs Taken for Coronary Heart Disease and Stroke by Individuals in the PURE Study, by Country Income Level, 2003–09

![Graph showing number of drugs taken for CHD and stroke by country income level.](image-url)

Source: Yusuf and others 2011.

Note: PURE = Prospective Urban Rural Epidemiology.
Mobile Health: Harnessing the Communication Revolution in LMICs

Mobile health, also known as m-health, uses cell phones and other devices to support public health and clinical care (Kahn, Yang, and Kahn 2010). The number of mobile phone subscriptions reached almost 7 billion by the end of 2014, nearly equaling the number of people in the world, and penetration rates are now 69 percent in Africa, 89 percent in Asia and Pacific, and 90 percent in low- and middle-income countries (LMICs) overall (ITU 2013).

Access to health care providers is a significant challenge in LMICs, especially in rural areas. Kinfu and others (2009) found that it would take 36 years for physicians and 29 years for nurses and midwives to reach the World Health Organization’s workforce targets, given current training levels. Voice and short message system (SMS) communication—telemedicine—allows providers to interact with more patients over a wider geographic area, increasing cost efficiency.

Ferrante and others (2010) conducted a multicenter, randomized controlled trial of patients with chronic congestive heart failure in Argentina. Nurses called patients, adjusting their medications depending on their symptoms and providing counseling and education. Patients in the intervention arm had a 20 percent relative risk reduction in all-cause mortality and heart failure hospitalizations at the end of the study (GESICA Investigators 2005). After three years, they continued to have fewer heart failure hospitalizations, higher medication adherence rates, and better quality-of-life scores (Ferrante and others 2010). Similarly, Nesari and others (2010) found that nurse phone calls to Iranian diabetic subjects led to significant improvements in hemoglobin A1c and healthy lifestyle changes.

LMICs often have limited postal and landline capabilities. Landlines require physical wires or fiber optic cable networks, which are prohibitively expensive to build without significant capital investments, and mobile technology allows LMICs to catch up to high-income countries without significant investments.

Affordable and reliable communication channels can be leveraged to better manage chronic conditions. Automated SMS messages led to improved glycemic control in Indians with prediabetes and diabetes (Ramachandran and others 2013; Shetty and others 2011), lower hemoglobin A1c in Iranian diabetics (Goodarzi and others 2012), and higher medication adherence rates in Malaysian ACS patients after hospital discharge (Khonsari and others 2014). All four studies included only participants with access to mobile phones with SMS-receiving capabilities.

Telemonitoring refers to remotely monitoring patients who are at different locations from the health provider. This field has grown dramatically since medical devices, such as blood pressure machines and glucometers, have become more affordable and capable of sending data to health providers over the Internet.

Piette and others (2012) studied the effect of automated phone calls and home blood pressure monitors in Hondurans and Mexicans with uncontrolled hypertension. While persons in the general intervention group did not show any improvement, those with low literacy had significantly lower blood pressure after the intervention. The Minerva Telecardio Project is researching the effect of electrocardiogram machines in remote towns in Brazil. These machines can record and send information to a cardiologist for interpretation. Andrade and others (2011) found that using these machines is more cost-effective than referring patients to another city.

Technological advances are not without inherent risks. Technology has made information vastly more accessible and shareable, but connectivity creates opportunities for abuse. Developed countries, such as the United States, have strict laws regarding health information that are enforced by government institutions and courts. Such legal precedents and infrastructure have not yet been set up in many LMICs.

M-health is not a replacement for patient-provider encounters but a facilitator of existing relationships. LMICs need to continue investing in their networks of medical providers and hospitals for m-health to be effective. Overall, m-health is a promising field of innovation for managing cardiovascular disease and will grow even more rapidly once smartphones with broadband capability become more prevalent in LMICs.
trial of hypertensive participants enrolled in a nurse-led clinic in Cameroon. Erhun, Aghani, and Bolaji (2005) evaluated the role of pharmacist-led clinics for patients with hypertension in Nigeria. Adeyemo and others (2013) randomized Nigerian participants with hypertension to clinic-based care with home visits or to clinic-based care only. Jafar and others (2009) conducted a cluster, randomized controlled trial of two interventions—home health education provided by health aides and training of general practitioners—in a population of Pakistani patients with hypertension. Regardless of the approach, intensified team-based care led to improved hypertension control.

Nesari and others (2010), the single study on diabetes, showed that having nurses call patients regularly to reinforce lifestyle changes and adjust medication doses led to a significant decrease in hemoglobin A1c. The intervention group increased adherence to lifestyle changes and glucose monitoring.

Guideline Implementation or Provider Education

Health care provider education and implementation of guidelines have the potential to standardize, improve, and sustain quality of care for cardiovascular and other conditions in LMICs. Studies of the impact of physician education and guideline dissemination yielded mixed results. Qureshi and others (2007) found that physician education through workshops and guideline dissemination led to significant improvements in patient care. Anchala and others (2015) revealed that providing physicians with a clinical decision support system for undertaking guideline-based hypertension management led to significant reductions in systolic blood pressure. However, Reutens and others (2012) and Steyn and others (2013) showed conflicting results and highlighted that guideline dissemination alone did not lead to actual implementation. Imposing guidelines without first gaining buy-in from providers may be a recipe for failure. Allocating time for education and feedback and strategically inserting guideline information into the flow of clinical practice may increase the chance that guidelines are actually implemented.

CONCLUSIONS

This chapter surveys the evidence on quality improvement in cardiovascular disease care at the system and patient-provider levels. An impressive amount of research on quality improvement has been carried out in LMICs—although not all approaches reviewed were consistently effective (figures 18.3 and 18.4). The innovative approaches taken by these programs demonstrate that it is not simply a matter of adapting HIC programs to LMICs: innovations to improve the quality of clinical care may originate precisely in low-resource environments. For example, the concept of shifting health care tasks to lay health workers originated in LMICs as a means to address the limited supply of medical doctors. As the AMPATH experience demonstrates (box 18.1), implementing a comprehensive approach to quality improvement, at both the system and patient-provider levels, is feasible in LMICs.

The majority of studies in this review focused on chronic cardiovascular disease and chronic risk factors such as hypertension and diabetes. At the system level, expanded health insurance coverage was found to improve the control of hypertension and diabetes. These powerful findings likely stem from improved access to care and financial protection from out-of-pocket health expenditures. Pharmaceutical supply regulation, drug price regulation, and essential medication designations are all potentially powerful system-level interventions, but their impact on cardiovascular disorders has yet to be studied.

At the patient-provider level, increased intensity of care—however delivered or by whom—was consistently found to improve chronic disease or risk factor outcomes. Intensification involved a team-based approach that included extra health care provider input, such as shifting tasks to pharmacists, dieticians, or nurses; phone counseling; smartphone-based reminders; or home visits. There were no head-to-head comparative effectiveness studies between these approaches, and multiple approaches often were combined (for example, implementing both task-shifting and patient education), so no one approach stands out as better than the others. Care intensification inevitably requires up-front investment, but this investment may be offset by improved downstream health outcomes for cardiovascular disease. A modeling study by Gaziano and others (2014) projected that, despite the added costs of hiring community health workers to manage hypertension in South Africa, increased intensity of care may offset this investment by averting expensive hospital admissions and chronic disease complications.

The studies reviewed for this chapter were often limited in ways that require cautious interpretation of their results. Because of the diversity of interventions and conditions, effect sizes could not be summarized in a meta-analysis. First, it is possible that the studies were published because of their positive results, and, because of the heterogeneity of interventions and targets, it was not possible to evaluate evidence of publication bias. Second, most studies were very short term (less than 12 months), and sustaining intervention effects may be
difficult in real clinical settings. As in HICs, most investigators studied clinical process measures and did not report on hard clinical outcomes, which may lead to gaming the system (via an inappropriately strong focus on reaching surrogate targets to the neglect of measures that improve meaningful outcomes) and other unintended consequences when these interventions are introduced into routine practice.

Although all of the studies measured some change in the quality of care, and some reported on the number of provider contacts and specified the technology or medications used, none reported on the costs or cost-effectiveness of these interventions. When resources are limited, the call to improve or restructure existing services may be tempered by the perception that implementation will be costly and not worth the effort—or at least not as attractive as an alternative policy with more immediate returns on investment.

Cost and quality-of-life measurement and cost-effectiveness analyses can be important guides in assessing the net benefits of quality improvement programs in limited-resource contexts. Modeling studies can extend the results of short-term interventions and surrogate clinical measures by simulating a range of likely downstream disease outcomes. At the very least, future studies need to report on intervention inputs as measured by “units”—including the number of providers, contacts between patients and providers, medications, and education classes and teachers—so that clinics and health organizations can “cost out” interventions when seeking the best ones for their settings. Collecting data elements common to implementation research, such as acceptability, sustainability, local context, and affordability, will help ensure that both positive and negative studies will guide implementation and future research.
The majority of cardiovascular disease patients now live in LMICs, and demographic trends virtually guarantee that the number and proportion will grow in coming decades. To ensure that each of these patients receives long-term treatment and control, it is essential to draw on promising research on clinical quality improvement and make the most of the resources directly at hand.

ANNEX

The annex to this chapter is as follows. It is available at http://www.dcp-3.org/CVRD.

- Annex 18A. Systematic Review Methods and Complete Search Results

Figure 18.4 Examples of Chronic-Phase Cardiovascular Disease Quality Improvement Interventions Identified in the DCP3 Systematic Review

Notes: DCP3 = Disease Control Priorities (third edition). Types of interventions targeting three levels of chronic-phase cardiovascular disease prevention and management. Bulleted items in bold are supported by evidence from the review. Bulleted items not in bold type indicate that no supporting evidence was found in the review and these interventions are potential areas for further research.

NOTES

World Bank Income Classifications as of July 2014 are as follows, based on estimates of gross national income (GNI) per capita for 2013:

- Low-income countries (LICs) = US$1,045 or less
- Middle-income countries (MICs) are subdivided:
 (a) lower-middle-income = US$1,046 to US$4,125
 (b) upper-middle-income (UMICs) = US$4,126 to US$12,745
- High-income countries (HICs) = US$12,746 or more.

Funding: AEM was supported by a grant from the U.S. National Heart, Lung, and Blood Institute career development award (K08 HL089675-01). Rajesh Vedanthan was supported by a grant from the Fogarty International Center of the U.S. National Institutes of Health (K01 TW 009218-05).
Panniyammakal Jeemon is supported by a Wellcome Trust, Department of Biotechnology India Alliance clinical and public health intermediate career fellowship.

Disclaimer: None of the authors have conflicts to declare. The views expressed in this article are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

Ferrante, D., S. Varini, A. Macchia, S. Soifer, R. Badra, and others. 2010. “Long-Term Results after a Telephone Intervention in Chronic Heart Failure: DIAL (Randomized Trial of Phone Intervention in Chronic Heart Failure) Follow-Up.” *Journal of the American College of Cardiology* 56 (5): 372–78.

