Costs, affordability, and feasibility of an essential package of cancer control interventions in low-income and middle-income countries: key messages from Disease Control Priorities, 3rd edition

Hellen Gelband, Rengaswamy Sankaranarayanan, Cindy L Gauvreau, Susan Horton, Benjamin O Anderson, Freddie Bray, James Cleary, Anna J Dare, Lynette Denny, Mary K Gospodarowicz, Sumit Gupta, Scott C Howard, David A Jaffray, Felicia Knauel, Carol Levin, Linda Rabeneck, Preetha Rajaraman, Terrence Sullivan, Edward L Trimble, Prabhat Jha, for the Disease Control Priorities-3 Cancer Author Group*

Investments in cancer control—prevention, detection, diagnosis, surgery, other treatment, and palliative care—are increasingly needed in low-income and particularly in middle-income countries, where most of the world’s cancer deaths occur without treatment or palliation. To help countries expand locally appropriate services, Cancer (the third volume of nine in Disease Control Priorities, 3rd edition) developed an essential package of potentially cost-effective measures for countries to consider and adapt. Interventions included in the package are: prevention of tobacco-related cancer and virus-related liver and cervical cancers; diagnosis and treatment of early breast cancer, cervical cancer, and selected childhood cancers; and widespread availability of palliative care, including opioids. These interventions would cost an additional US$20 billion per year worldwide, constituting 3% of total public spending on health in low-income and middle-income countries. With implementation of an appropriately tailored package, most countries could substantially reduce suffering and premature death from cancer before 2030, with even greater improvements in later decades.

Key messages
• Cancer is a major cause of death in low-income and particularly in middle-income countries (LMICs), and will continue to increase as a percentage of deaths in LMICs, being driven by population ageing and substantial decreases in mortality from other causes.
• In most populations, helping current tobacco users to quit and preventing young people from starting smoking are the most urgent priorities to prevent cancer (and other non-communicable diseases [NCDs]), along with vaccination against the cancer-causing hepatitis B virus and human papillomavirus (HPV). Increased tobacco taxation will help to reduce cancer incidence and generate substantial extra revenues for governments. Excluding tobacco-related and virus-related cancers, most other common cancers are not preventable, but many cases can be effectively treated—eg, breast cancer and colorectal cancer are common and curable if treated early. Additionally, in the next few decades, until the protective effects of HPV vaccination are widespread, cervical precancerous changes and early cancers will remain common and are treatable. Interventions supported by the analyses in Disease Control Priorities, 3rd edition (DCP-3) go further than WHO’s best buys (most beneficial interventions at the lowest cost), which are limited to interventions deliverable without hospital facilities. DCP-3’s essential package of cost-effective and feasible interventions would, if fully implemented, cost an additional US$20 billion per year, or 3% of total public spending on health in LMICs (2.6% in upper-middle-income, 5% in lower-middle-income, but 13% in low-income countries). In terms of annual expenditure per capita, this amounts to $5.7 in upper-middle-income countries, $1.7 in lower-middle-income countries, and $1.7 in low-income countries. Such increases are potentially feasible in all but the low-income countries, which would need external support.
• Some cancer services should be considered for inclusion in universal health coverage, focusing on ensuring their availability and affordability. Global initiatives for cancer control in LMICs are needed to reduce the costs of key inputs for the essential package, including large-scale commodity purchases; to expand technical assistance and dissemination of skills; and to promote cancer research.
Annual deaths at ages 0–69 years

<table>
<thead>
<tr>
<th>Cancer site</th>
<th>Low-income countries* (n=0·8)</th>
<th>Lower-middle-income countries (n=2·4)</th>
<th>Upper-middle-income countries* (n=2·3)</th>
<th>High-income countries (n=1·2)</th>
<th>World (total; n=6·7)*</th>
<th>LMICs</th>
<th>High-income countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung, mouth, or oesophagus</td>
<td>70 000</td>
<td>260 000</td>
<td>560 000</td>
<td>300 000</td>
<td>1 200 000</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Liver</td>
<td>30 000</td>
<td>90 000</td>
<td>270 000</td>
<td>60 000</td>
<td>440 000</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Breast</td>
<td>30 000</td>
<td>140 000</td>
<td>210 000</td>
<td>50 000</td>
<td>350 000</td>
<td>75%</td>
<td>90%</td>
</tr>
<tr>
<td>Stomach</td>
<td>20 000</td>
<td>80 000</td>
<td>100 000</td>
<td>20 000</td>
<td>200 000</td>
<td>50%</td>
<td>60%</td>
</tr>
<tr>
<td>Colon or rectum</td>
<td>20 000</td>
<td>80 000</td>
<td>120 000</td>
<td>20 000</td>
<td>100 000</td>
<td>25%</td>
<td>40%</td>
</tr>
<tr>
<td>Cervix</td>
<td>40 000</td>
<td>90 000</td>
<td>60 000</td>
<td>20 000</td>
<td>60 000</td>
<td>70%</td>
<td>90%</td>
</tr>
<tr>
<td>Ovary</td>
<td>80 000</td>
<td>30 000</td>
<td>30 000</td>
<td>30 000</td>
<td>100 000</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Prostate</td>
<td>40 000</td>
<td>10 000</td>
<td>20 000</td>
<td>20 000</td>
<td>60 000</td>
<td>70%</td>
<td>90%</td>
</tr>
<tr>
<td>Other or unknown site</td>
<td>110 000</td>
<td>330 000</td>
<td>470 000</td>
<td>310 000</td>
<td>1 220 000</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Leukaemia

| Age 0–14 years | 3000 | 10 000 | 10 000 | 20 000 | 30 000 | 65% | 90% |
| Age 15–69 years | 10 000 | 40 000 | 60 000 | 30 000 | 1 400 000 | 30% | 50% |

All non-communicable diseases

| 16 600 000 | 6 300 000 | 5 950 000 | 2 200 000 | 16 070 000 | NA | NA | NA |

Communicable or external causes

| 4 100 000 | 7 380 000 | 2 650 000 | 500 000 | 14 660 000 | NA | NA | NA |

All causes

| 5 760 000 | 13 680 000 | 8 600 000 | 2 700 000 | 30 730 000 | NA | NA | NA |

All cancers (% of all causes)

| 350 000 (6%) | 11 000 (3%) | 12 000 (2%) | 12 000 (3%) | 4 400 000 (14%) | NA | NA | NA |

Population and mortality data are from WHO’s Global Health Observatory9 and the UN Population Division.10 Number of deaths greater than 10 000 are rounded to the nearest 10 000, so totals might differ.

LMICs=low-income and middle-income countries. NA=not applicable. *By World Bank income grouping of countries.11 †Estimated 5-year survival from Allemani and colleagues,12 rounded to the nearest 5%.

Table 1: Worldwide cancer deaths in 2012 in patients aged 0–69 years by cancer site and country income grouping, and 5-year survival rates in LMICs and high-income countries

Confidence in the overall programme.α,β Cancer control programmes can mobilise broad political support, as occurred in Mexico with the addition of breast and childhood cancer treatment in the 2012 expansion of national health insurance.α

In high-income countries most patients who develop cancer survive, although survival depends strongly on the type of cancer (table 1). In LMICs, less than a third of people survive, and in some populations the proportion is much smaller.α These differences in survival are partly due to differences in the patterns of cancer incidence: some cancer types that are common in many LMICs—such as lung cancer, oesophageal cancer, stomach cancer, and liver cancer—have a poor prognosis even in high-income countries.α Another major contributor to poor outcomes is that a smaller proportion of those with cancer in LMICs present for treatment with early, curable stages of cancer than in high-income countries, partly because effective and affordable treatment is not available.α,β

The aim of DCP-3 is to identify potentially cost-effective, feasible, and affordable interventions that address large disease burdens in LMICs (appendix). Accordingly, we have examined the avoidable burden of premature death (defined as before age 70 years, the estimated global life expectancy) from cancer in LMICs (table 1); the main cost-effective interventions for the prevention, early detection, treatment, and palliation of cancer; and the costs and feasibility of developing, in an appropriate timescale, health-system infrastructures that could deliver progressively wider coverage of a set of cost-effective cancer services.

We define an essential package of cost-effective interventions for cancer and discuss their affordability and feasibility, which greatly differs between low-income, lower-middle-income, and upper-middle-income countries. Even in the same income category, countries might differ in epidemiological patterns and health systems, resulting in country-specific essential packages. Hence, this Review is not intended to lead to a common cancer plan for all LMICs, but to spur dialogue within countries about rational cancer control planning and implementation that will result in national cancer plans tailored to local conditions, retaining the characteristics of effectiveness, cost-effectiveness, feasibility, and affordability. Finally, we assess ways in which global initiatives—particularly for supplies, training and professional development—could help LMICs reduce the costs of expanded cancer control.

Changes in cancer burden

WHO’s International Agency for Research on Cancer (IARC) estimated 14 million new cases of cancer and 8 million deaths from cancer in 2012, with more than half of the deaths in people aged younger than 70 years (table 1).α Of the 4·4 million cancer deaths in people aged younger than 70 years, 3·4 million were in LMICs
(0·3 million in low-income, 1·2 million in lower-middle-income, and 1·9 million in upper-middle-income countries). Two-thirds of these deaths were from cancers of the lung, mouth, or oesophagus (0·9 million; many caused by tobacco); liver (0·4 million, many caused by vaccine-preventable hepatitis B virus [HBV] infection); stomach (0·3 million); breast (0·3 million); cervix (0·2 million, many caused by vaccine-preventable human papillomavirus [HPV] infection); and colon or rectum (0·2 million; table 1, figure 1).

Worldwide, cancer death rates in people of a specific age are slowly decreasing (table 2). Between 2000 and 2010, age-standardised cancer death rates in people aged younger than 70 years fell by about 1% per year, bolstered by worldwide decreases in cervical cancer and stomach cancer (for reasons which are not fully understood). Male lung cancer mortality rates decreased in some countries between 2000 and 2010, but tobacco-associated cancer death rates rose slightly in lower-middle-income countries.

Absolute numbers of cancer deaths and cancer as a proportion of all deaths will, however, continue to rise because of three factors: world population is increasing (particularly in people aged older than 50 years), mortality from diseases other than cancer is decreasing quicker than decreases in cancers, and in some major populations the effects of tobacco are increasing.

Effect of cancer on households and poverty

By contrast with common perceptions, cancer death rates are often higher in the poor than in the rich. For example, in India, the age-standardised death rate from cancer at ages 30–69 years was double in illiterate compared with educated populations. Moreover, cancer, similar to other NCDs, is an important cause of catastrophic health expenditures that can push households into poverty. In many LMICs, cancer surgery, radiotherapy, and chemotherapy are largely paid for out-of-pocket. In Bangladesh and Cameroon, high user fees increase the likelihood that patients will not return for cancer surgery. Conversely, however, in India some standard types of cancer surgery (eg, mastectomy) are supposed to be provided at a low affordable cost in public hospitals; likewise, in China the national health insurance scheme now offers standard types of cancer surgery at prices most can afford. Nevertheless, even in China and India cancer can impose a major financial burden on families, especially on those in the lowest income groups, and in India access is limited to some large cities.

An essential package of interventions

Criteria for essential interventions

DCP-3 seeks to develop essential packages of cost-effective interventions to be considered and modified as appropriate by countries for all health conditions in the nine volumes. Both the specific interventions and the criteria used to choose them (ie, effectiveness, cost-effectiveness, feasibility, and affordability) are intended to help LMICs decide what to support and what not to. For middle-income countries that already have many cancer treatment centres and clinics, the DCP-3 approach could be used to help assess additional interventions now or in the future, or to reassess current activities. In all LMICs, it could help ensure due consideration about how interventions regarded as locally appropriate can achieve high population coverage.

WHO has already formulated its own list of NCD best buys (most beneficial interventions at the lowest cost) for LMICs, which are feasible without hospital facilities. Those most relevant to cancer are three preventive measures: tobacco control interventions, HBV vaccination to prevent liver cancer, and some form of screening and treatment for precancerous cervical lesions. The DCP-3 Cancer essential package adds HPV vaccination to prevent cervical cancer in addition to treatment of early stage cervical cancer (and, by implication, other resectable cancers; table 3); diagnosis and treatment for early breast cancer; diagnosis and treatment for selected highly curable childhood cancers; and palliative care, including, at a minimum, opioid drugs for severe pain control.

This package is organised according to different delivery platforms, classified as national level policy, regulation or community information, primary health clinics or mobile outreach, first-level hospitals (district hospitals), or specialised cancer centres.
Table 3: Essential cancer intervention package recommended by DCP-3

<table>
<thead>
<tr>
<th>Percentage change in mortality rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-income countries</td>
</tr>
<tr>
<td>All cancers</td>
</tr>
<tr>
<td>Lung, mouth, oesophagus (mainly tobacco related)</td>
</tr>
<tr>
<td>Cervix, liver, stomach (mainly infection related)</td>
</tr>
<tr>
<td>Other cancers</td>
</tr>
<tr>
<td>All causes</td>
</tr>
</tbody>
</table>

Table 2: Percentage change in mortality rates for cancer deaths and all causes by country income group, from 2000 to 2010 in people aged 0–69 years

<table>
<thead>
<tr>
<th>Number of deaths (in 2012) of people aged <70 years</th>
<th>Interventions</th>
<th>Level of delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cancers*</td>
<td>Education on tobacco hazards, value of HPV and HBV vaccination and importance of seeking early treatment for common cancers; palliative care including, at a minimum, opioids for pain relief</td>
<td>National policies, regulation, or information</td>
</tr>
<tr>
<td>Tobacco-related cancers (oral, lung, and oesophagus)</td>
<td>900 000</td>
<td>Taxation, warning labels or plain packaging, and bans on public smoking, advertising, and promotions, and monitoring of tobacco use and its effects; cessation advice and services (mostly without pharmacological therapies)</td>
</tr>
<tr>
<td>Liver cancer</td>
<td>380 000</td>
<td>HBV vaccination (including birth dose)</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>280 000</td>
<td>Treat early-stage cancer†</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>210 000</td>
<td>Emergency surgery for obstruction</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>180 000</td>
<td>School-based HPV immunisation; opportunistic screening¶ (visual inspection or HPV DNA testing), treat precancerous lesions; treat early-stage cancer</td>
</tr>
<tr>
<td>Childhood cancers</td>
<td></td>
<td>80 000</td>
</tr>
</tbody>
</table>

Assessment of the feasibility of these interventions follows the model of resource-level appropriate interventions developed for breast cancer by the Breast Health Global Initiative.27 This classification recognises that different generations of effective breast cancer treatments are available with different resource costs and infrastructure requirements.

The cost of the essential package is for the entire population, not just those aged younger than 70 years. We estimated the global and per capita costs of every intervention in the package separately for low-income, lower-middle-income, and upper-middle-income countries (figure 2). Most LMICs should be able to implement a locally customised essential package that includes most of their population by 2030, in view of anticipated increases in public spending on health.4 The schedule of implementation will vary, however, as some interventions, particularly increased tobacco taxes and widespread pain palliation, can begin now in many countries.20 By contrast, affordable availability of treatments that need substantial infrastructure development might take many years to be fully achieved, even if a start is made immediately.

Prevention

Most countries (183 worldwide) vaccinate infants against HBV, with 81% global coverage in 2013. This will prevent many liver cancers in future decades, but a birth dose (important in countries with high mother-to-child transmission) reached only 26% of newborns in 2011.29

75 countries (including high-income countries) have started national HPV vaccination programmes and others are developing experience with the vaccine.30 Additionally, Gavi is supporting pilot programmes in several low-income countries in sub-Saharan Africa. The delivery cost of giving adolescent girls three doses is the major barrier, because the Gavi-subsidised vaccine costs only US$0·60–1·20 for the recommended three doses, whereas programme costs range between $4 and $13 per fully immunised girl.30,31 HBV and HPV vaccinations will have their main effect on mortality during the second half of this century, when the cohorts of immunised children reach middle age and these cancers would have become more common.

Tobacco control consists of increased taxes on cigarettes and other tobacco products, counter-
advertising, warning labels and other packaging requirements, bans on advertising, bans on smoking in public places, cessation support for smokers, and anti-smuggling technologies and can achieve quick health gains. People who quit smoking before age 40 years avoid more than 90% of the risk they would have incurred had they continued to smoke. Therefore, a substantial saving of lives could start in 5–10 years after tobacco control measures are introduced, with increasing gains thereafter. The most effective tobacco control intervention is increased excise taxes, which increases adult cessation and discourages youth initiation. However, unlike in many high-income countries, cessation is uncommon in most LMICs, with adults quitting only after developing cancer (or some other major disease) and not while healthy to avoid disease.

Only 28 countries are undertaking comprehensive tobacco control programmes with high taxes as a major strategy, with some notable successes. France and South Africa used large tax increases in the 1990s to triple the price of cigarettes and by 2005, consumption had halved but real government revenues from tobacco had doubled. Brazil has also greatly reduced smoking prevalence. Despite severe industry opposition, in the past 5 years Mexico, the Philippines, and India substantially increased cigarette taxes, and Mexican cigarette sales have already started to decrease. WHO’s Framework Convention on Tobacco Control has been adopted by more than 180 countries and is an important enabler of country action for comprehensive tobacco control measures.

Screening

The emphasis on diagnosis and treatment of cancers at an early stage (or in a precancerous stage for cervical cancer screening) might suggest the appropriateness of many cancer screening programmes, but population screening is expensive and needs considerable infrastructure. Only opportunistic cervical screening (with or without some added outreach) meets the DCP-3 criteria and is therefore suggested for consideration in the essential package. Cervical screening with visual inspection (with acetic acid to stain abnormalities) can detect precancerous changes that can be treated inexpensively and often during the same visit. When convenient rapid diagnostic tests for the main carcinogenic types of HPV infection become affordable they could further increase cervical screening effectiveness and reliability. Two or three such screenings every 5–10 years in women aged 30–35 years at first screening should halve the lifetime risk of cervical cancer.

The DCP-3 essential package does not include any type of screening for prostate or breast cancer. Both have attracted much controversy in high-income countries, albeit for different reasons. The most widespread means of prostate cancer screening is through a blood test for prostate-specific antigen (PSA; a protein from cancerous prostate cells), with or without physical examination. Although simple, PSA testing can lead to overdiagnosis and overtreatment, with many more patients being harmed by treatment side-effects than are saved from cancer. The US Preventive Services Task Force discourages PSA testing. By contrast, screening mammography for breast cancer is supported by most high-income countries.
Review

Panel: Possible strategies for treatment of early breast cancer in low-income and middle-income countries

By definition, in early breast cancer (stage I, II, and IIIA) all detectable disease can be removed surgically, but micrometastases might remain that later cause recurrence and death, and adjuvant treatments might be given after surgery to reduce this risk. In high-income countries, most women receiving appropriate treatment for early breast cancer survive their disease. The success of breast-conserving surgery (lumpectomy) plus radiotherapy to the conserved breast is about the same as for mastectomy (removal of the entire breast, plus perhaps some local lymph nodes). Either treatment can be offered to patients if safe radiotherapy is available. The most basic surgical procedure for early breast cancer is some form of mastectomy. For women in low-income and middle-income countries (LMICs) with early breast cancer, the first requirement is good quality, safe surgery. Particularly in low-income countries, timely access to safe surgery is a major barrier. In middle-income countries in which population access to surgical services is generally better, surgical quality is the major concern, particularly for adequate resection of a tumour. After technically successful surgery, treatments can be based on oestrogen-receptor status, estimated recurrence risk, and general health. Oestrogen-receptor status of surgically removed breast cancers can be determined at a reasonable cost (about US$10 in India). For patients with cancer that is oestrogen-receptor positive, about 5 years of endocrine drug therapy substantially reduces the 15-year recurrence risk and is relatively non-toxic. Endocrine drugs such as tamoxifen or, for postmenopausal women, an aromatase inhibitor can be dispensed safely to outpatients and are available as low-cost generics (generic tamoxifen costs about $15 per year in India, and generic aromatase inhibitors cost about $50 per year). Chemotherapy also reduces recurrence, but has more toxic side-effects and needs more careful medical supervision to ensure safety and efficacy than do endocrine treatments. New drugs (eg, trastuzumab) that target other breast cancer receptors are not cost-effective in LMICs.

Basic regimens of generic cytotoxic drugs (eg, four cycles of daunorubicin and cyclophosphamide with drug costs of about $200 in India) should be used wherever surgery is practicable, and could be offered to women who are otherwise in good health but whose disease has already spread from the breast to the local lymph nodes. More effective cytotoxic regimens (eg, with taxanes) would increase toxic effects, drug costs, and supervision costs.

Finally, global initiatives might help to reduce the cost of cancer drugs and other commodities, and develop and disseminate standardised, resource-appropriate treatment protocols (such as those developed by the Breast Health Global Initiative). The successful global initiatives to aid the diagnosis and treatment of HIV/AIDS could be used as a model for cancer.

Diagnosis and treatment

Accurate diagnosis is needed for cancer treatment, but a scarcity of trained pathologists and other laboratory technologists and scarce facilities and supplies crucially restrict diagnostic capacity in many LMICs. In addition to an initial diagnosis of cancer (which might be based on biopsy specimens) that can help assess the success of surgery, diagnostic services can help determine treatment strategies after surgery. Simple tumour, node, metastasis staging has long been clinically useful. Other tests on the tumour itself can determine post-surgical management, particularly, breast cancer surgical specimens that should be tested for oestrogen receptor positivity; only if results are oestrogen receptor positive will endocrine treatment substantially reduce the chances of cancer recurrence and death (panel).

Treatment for early breast cancer and cervical cancer involves surgery, radiotherapy, chemotherapy, and targeted (eg, endocrine) therapy; although a patient might not need every modality. For early cervical cancer, surgery is the primary treatment and radiotherapy is an adjunct. For whatever method is regarded as complete treatment in a specific country context, all components of care should be accessible by patients once treatment is started. Incomplete treatment can cause side-effects with little clinical benefit.

Childhood cancer is rare, causing only 1% of cancer deaths in high-income countries. It represents the smallest burden of the cancers targeted by the essential package. Although these types of cancer cannot generally be prevented, many types of childhood cancer do have a high cure rate in high-income countries, making them feasible targets in other countries. Cure rates in most LMICs are lower, but reasonably good outcomes have been achieved in specialised childhood cancer centres and through national referral plans, particularly for acute lymphoid leukaemia, Burkitt lymphoma, and Wilms’ tumour.

Palliative care

Many incurable cancers cause intractable pain. Opioid medications can generally relieve this pain, greatly improving the quality of life in the last few weeks or months for both patients and families. The simplest and
least expensive preparation is oral morphine, which works for an estimated 90% of patients with severe terminal cancer pain. It is also used by patients with HIV/AIDS and other chronic conditions. At present, reasonably good palliative care is widely available only in high-income countries, but it could be made available in LMICs quite rapidly even before other types of treatment become available. Although palliative care includes more than pain control and is relevant throughout the course of illness, pain control is at its core.

With appropriate organisation and cooperation from government and health-care sectors, opioids can be provided even in rural areas, at home, and at a low cost. However, the reality is that few people have access to effective pain medicines because of unnecessary country restrictions. In 2006, 66% of the world’s population lived in countries that had virtually no consumption of prescribed opioids, 13% in countries with low consumption, and 4% in countries with moderate consumption.

Local priority conditions

Any essential package of cancer control should be customised and augmented with locally appropriate and feasible interventions. These interventions might include storage of grain and other foods to avoid fungal contamination, which can cause liver cancer in parts of Africa and Asia; opportunistic screening (especially of high-risk tobacco users) and treatment for precancerous lesions and early-stage oral cancer in India and other countries with high oral cancer burdens; screening and treatment for colorectal cancer in Argentina and Uruguay; elimination of liver flukes (by 1 day of inexpensive praziquantel) to prevent bile duct cancer in the few areas where flukes are common; or treatment of schistosomiasis to prevent bladder or intestinal cancer in parts of Africa, the Middle East, and Asia.

Finally, occupational and environmental cancer hazards (eg, use of power tools on asbestos roofing or insulation, heavy smoke pollution in houses, and heavy fungal contamination of stored carbohydrate foodstuff) should be monitored and mitigated where appropriate.

Costs of interventions

For most types of cancer, reported literature about cost-effectiveness in LMICs is small: nine studies were identified for breast cancer, two (plus four from high-income Asian countries) for colorectal cancer, one for liver cancer prevention, and none for paediatric cancer. 17 studies were sourced from an expert search for cervical cancer, and in 2012 a systematic review for vaccines identified three studies for HBV vaccination. A useful benchmark was to exclude from the essential package those interventions that are not clearly cost-effective in high-income countries. Most new drug treatments for advanced cancer fall into this category, such as bevacizumab (a monoclonal antibody for metastatic breast cancer, which, at current prices, does not meet cost-effectiveness criteria even in high-income countries. Similarly, cetuximab (a monoclonal antibody for metastatic colon and lung cancers) and irinotecan (for colon cancer) are not judged to be cost-effective in the UK. Radiotherapy is one of the interventions included in curative treatments for early cervical and breast cancer and, where available, it is considered cost-effective.

Excise taxes on tobacco, opportunistic cervical cancer screening and treatment of precancerous lesions, and HBV vaccination are cost-effective in LMICs. HPV vaccination cost-effectiveness depends on the vaccine price and programme costs, and some aspects of the treatment for early breast cancer are cost-effective irrespective of which country the breast cancer surgery is done in. The perspective of tobacco control is of health gains compared with the minimal costs of the interventions. Various reviews of the broader welfare perspective on taxation have reached similar conclusions about the desirability of increased tobacco taxes. In China, raising tobacco taxes provides substantial financial protection to those in low-income groups.

Costs of national packages

To illustrate per-capita cost estimates for an essential package, we combined information about costs and demography from Nigeria, India, and Brazil (although Nigeria is a lower-middle-income country, we use its demographic structure and scarce facilities and human resources to represent low-income countries, mainly in sub-Saharan Africa). To account for training, pathology services, and other system costs, we used a multiplier equal to 50% of the intervention-based costs, a figure used in similar costing studies for nutrition and for health systems. However, we do not include the one-time investment costs for construction of hospitals, clinics, and other infrastructure that would be needed to support cancer and other clinical services in the long term.

The DCP-3 essential package of cancer control interventions would cost roughly an additional $1.7 per capita in low-income and lower-middle-income countries, and $5.7 per capita in upper-middle-income countries (table 4), for total costs of about $1.4 billion, $4.4 billion, and $13.8 billion, respectively. There are obvious uncertainties about current and future costs. Importantly, drug costs can fall substantially as their patents expire, and global initiatives could further reduce prices of key generic versions.

Affordability and domestic financing of essential cancer services

The total estimated annual cost of the essential package of cancer interventions for all LMICs is about $20 billion (table 5). As a proportion of current total public spending on health, this is about 3% in upper-middle-income and 5% in lower-middle-income countries, but 13% in low-income countries. As a broad benchmark,
high-income countries devote 3–7% of total health spending to cancer control.46 Most LMICs allocate far less: cancer accounts for about 1% of health spending (public and private) in Brazil and India, and only 2% in China and Mexico.6,41 Financing of cancer control will have to come mainly from national health-care budgets, particularly in middle-income countries where rising incomes are enabling expansion of public financing for health.131 South Africa has assessed which interventions it might include in an expanded national health insurance package132 and similar work is underway in India.133,134 In low-income countries, it would be inappropriate for governments to shift to allocating 13% of their health-care expenditures to cancer. External assistance will be needed in those countries to establish an expansion path for cancer control. A clear principle to use is the eventual goal of coverage for every person (even if coverage expands gradually), but not coverage of everything,29 since poorly conceived plans might provide expensive ineffective treatments for a few, while missing the opportunity to expand cost-effective population coverage. However, public finance is not necessarily synonymous with public delivery.75 Properly regulated private hospitals, facilities, and providers can be contracted to deliver cancer control interventions. For both public and private hospitals, alignment of payment incentives to good quality and outcomes is essential.21

Several Latin American countries are already expanding their health insurance systems from coverage restricted to occupational groups or selected susceptible groups, to more comprehensive coverage (using general taxation).6 However, for some lower-middle-income countries and most low-income countries, substantial increases in public finance for health, paired with economic growth or external assistance, would be needed to finance a full package of interventions.4 Even those countries, however, could benefit from considering the future cancer burden, costs, and financing to project a future cancer control plan. Higher tobacco taxes are the most important single cancer prevention intervention at a practical level, and a tripling of the excise tax on tobacco (thereby almost doubling prices) could mobilise an extra $100 billion worldwide in annual revenue.72 For all LMICs, the epidemiological dividend that accrues from a decreased burden of infectious disease should generate revenue that can be spent on NCD control.76

Implementation challenges for an essential package

In the essential package, some interventions can be implemented reasonably quickly, such as tobacco control measures that include taxation and regulation,38 and policy changes to increase access to narcotics (although to establish nationwide programmes and train a full cadre of providers might take years).26 Some interventions can be scaled to reasonably large coverage quickly with existing infrastructure, such as school-based HPV vaccination in adolescent girls, or HBV vaccination in newborn babies. By contrast, other interventions will need expanded clinical access—most notably surgical treatment of early stage breast cancer and cervical cancer.8 To increase a country’s surgical capacity is expensive but feasible from an organisational perspective, especially if existing district hospitals can be strengthened77,78 (eg, by being paired with central cancer clinical expertise), whereas expansion of chemotherapy treatment needs an extensive network of laboratories and follow-up, which in low-income and lower-middle-income countries is feasible in only urban areas. Scaling up radiotherapy needs large capital expenditures, and substantial attention to guidelines, treatment protocols, and monitoring of safety precautions.29,40

Table 4: Estimated marginal costs of essential interventions from the DCP-3 cancer package for low-income, lower-middle-income, and upper-middle-income countries per capita in 2012

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Low-income countries (US$)</th>
<th>Lower-middle-income countries (US$)</th>
<th>Upper-middle-income countries (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive tobacco control measures</td>
<td>0.05</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>Palliative care and pain control</td>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Hepatitis B virus vaccination</td>
<td>0.08</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Promote early diagnosis and treat early-stage breast cancer</td>
<td>0.43</td>
<td>0.43</td>
<td>1.29</td>
</tr>
<tr>
<td>Human papillomavirus vaccination</td>
<td>0.23</td>
<td>0.23</td>
<td>0.40</td>
</tr>
<tr>
<td>Screen and treat precancerous lesions and early-stage cervical cancer</td>
<td>0.26</td>
<td>0.29</td>
<td>0.87</td>
</tr>
<tr>
<td>Treat selected childhood cancers</td>
<td>0.03</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>Subtotal costs</td>
<td>1.13</td>
<td>1.15</td>
<td>3.81</td>
</tr>
<tr>
<td>Ancillary services (50% of subtotal)</td>
<td>0.57</td>
<td>0.58</td>
<td>1.91</td>
</tr>
<tr>
<td>Total costs</td>
<td>1.70</td>
<td>1.73</td>
<td>5.72</td>
</tr>
</tbody>
</table>

Calculations based on Cancer volume of Disease Control Priorities, 3rd edition (DCP-3), and Horton and Gauvreau.59 Demographic and epidemiological information from Nigeria, India, and Brazil is used to model costs for low-income (mainly in sub-Saharan Africa), lower-middle-income, and upper-middle-income countries, respectively.79 However, country-specific planning will need country-specific estimates.

Table 5: Annual resource requirements for essential cancer intervention package for LMICs

<table>
<thead>
<tr>
<th>Resource</th>
<th>Low-income countries</th>
<th>Lower-middle-income countries</th>
<th>Upper-middle-income countries</th>
<th>Total LMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public spending on health (% of country GDP in 2013)</td>
<td>2.0%</td>
<td>1.8%</td>
<td>3.1%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Total public spending on health in 2013 (billions; US$)</td>
<td>$11</td>
<td>$89</td>
<td>$534</td>
<td>$654</td>
</tr>
<tr>
<td>Cost of cancer interventions in 2013 (billions; US$)</td>
<td>$1.4</td>
<td>$4.4</td>
<td>$13.8</td>
<td>$19.6</td>
</tr>
<tr>
<td>Cancer package as percentage of total public spending on health in 2013*</td>
<td>12.0%</td>
<td>4.9%</td>
<td>2.6%</td>
<td>3.1%</td>
</tr>
</tbody>
</table>

LMIC-low-income and middle-income countries. GDP=gross domestic product. *Calculations are based on spending data from the World Bank.80
Particularly for low-income countries in which minimal cancer services exist in the public sector, the needed expertise and resources for cancer treatment will take years of steady investment in physical and human infrastructure. Elements missing or in short supply in LMICs include: trained professionals in oncology and relevant disciplines; appropriately equipped facilities for surgery, radiotherapy, pathology, and other laboratory testing services (e.g., breast cancer oestrogen receptor testing panel); supplies (e.g., chemotherapy drugs); geographical access to facilities with affordable cancer services, including surgery; public awareness of the availability and effectiveness of cancer control interventions; and cancer incidence and cause-of-death data.

As more people are successfully treated and live for many years, survivorship services (e.g., rehabilitation, remedies for physical deficits caused by treatment, restriction of the social stigma of having had cancer, and follow-up for recurrence) will increase in importance, but costs for survivorship programmes are not included in the recommended package.

The DCP-3 package emphasises treatment for early stage cervical and breast cancers, and similarly for other cancers included in specific country plans, because cure rates are substantially higher than for more advanced cancers. Locally appropriate opportunistic cervix screening is included, but organised population-wide screening programmes are not. Even without screening, however, LMICs might be able to achieve a somewhat earlier stage of presentation of common cancers by making affordable treatment available and communicating this to patients. Historical evidence from high-income countries (e.g., stage-shifting cervix cancer in Sweden before organised screening began about 1960) supports this approach.

Cancer treatment can be organised through existing medical facilities (particularly district hospitals) or through specialised centres. However, good links between facilities, with a centralised locus of monitoring and guidance, are needed. For example, all children with cancer in Honduras (population 8 million) are treated in two centres that collaborate and communicate closely. By contrast, children with cancer in Colombia (population 48 million) can be treated in more than 150 health-care institutions of varying size, with little communication between centres, adversely affecting patient outcomes and costs. India has a population of 1.3 billion, and is building a National Cancer Grid to link non-specialist hospitals with specialist cancer centres and to standardise treatment protocols.

Building and improving cancer control capacity needs attention to the quality of services, from pathology and diagnosis to surgery, chemotherapy, radiotherapy, and palliative care. Additionally, hospitals need upgrading to provide basic cancer surgical services, develop cancer referral networks, track service performance, integrate the delivery of different types of services, and ensure that financial flows accompany services.

Global initiatives for cancer control

Only 1% of the $30 billion development assistance for health in 2010 was for NCDs, of which very little was for cancer. Funding for NCDs will increase with increasing global recognition of their importance, but it is unlikely that substantial global funds will be allocated to national health systems to deal with cancer. As additional funding becomes available, we suggest three priorities for international support. First, we suggest lowering the costs of key inputs for the essential package and other cost-effective interventions, such as HPV and other vaccines, cancer drugs (including generics), pathology tests, radiotherapy machines, and other relevant goods. The Global Fund to Fight AIDS, Tuberculosis and Malaria, Gavi, the Clinton Health Access Initiative, and other international partnerships have developed mechanisms to reduce prices of infectious disease control commodities by using economies of scale. Similar efforts for cancer are possible with subsidies for reputable and affordable medicines, advanced market commitments, and bulk purchases of drugs or radiotherapy machines.

Second would be to expand technical assistance in cancer control. International and regional networks exist for many aspects of cancer care (e.g., treatment guidelines, networks on cervical screening, childhood cancer treatment and research, and palliative care). Other support modalities (e.g., institutional twinning) typically include institutions in high-income and low-income countries (north–south collaborations), but opportunities should grow to add south–south collaborations (LMICs with other LMICs). Within countries, peer-based professional standards of cancer care and reporting of outcome and performance for various facilities can improve patient quality of care.

Finally, support for research might be the best use of scarce overseas developmental assistance. Research could include tracking of national cancer burdens, clinical trials, implementation science (including research into delivery systems and economics, notably local economic analyses to define appropriate essential packages of services), cancer epidemiology and biology, and development of widely practicable low-cost technologies.

Conclusions: benefits of expanded cancer control

Despite substantial challenges in most LMICs, appreciable reductions in the cancer burden might be possible by 2030 (with even greater reductions by 2050 and later), particularly through treating common cancers that are detected early, tobacco control that encourages widespread adult smoking cessation, and vaccination against HBV and HPV. Age-standardised cancer death rates at ages 0–69 years were decreasing worldwide at 10% per decade from 2000 to 2010. If this rate of decrease continues, then from 2010 to 2030 death rates will fall by about 20%. To achieve the UN’s 2030 goals of a third reduction in NCDs, tobacco cessation in LMICs must accelerate to approach the rates in high-income countries, where at about age
50 years, there are now more ex-smokers than current smokers.1,2 WHO estimates that tobacco control, HPV and HBV vaccination, and opportunistic cervical cancer screening could avoid about 6\% of cancer deaths by 2030 (about 200,000 deaths annually before age 70 years)3 and the DCP-3 essential package could help to achieve greater reductions. If, as expected, the availability of treatment shifts diagnoses for common treatable cancers to earlier stages, additional lives could be saved. The benefits of pain relief are not measured in lives saved, but are important to patients and their families. Increases to provision of cancer services might also help shrink the health gap between rich and poor, because many cancers and risk factors suggested for targeting are more prevalent in patients at the lower end of the economic ladder. Cancer control is often approached with pessimism, but practicable, deliberate, cost-effective steps can enable many countries to substantially reduce the suffering and premature death from cancer by 2030, with much greater improvements by 2050.

Contributors
HG and PJ generated the plan for this study. HG prepared the first draft with input and revisions from all authors. SH and PJ developed the costs of the essential package. All authors approved the final draft. HG and PJ had responsibility for submitting for publication.

Members of the DCP-3 Cancer Author Group

Declaration of interests
FK reports grants from GlaxoSmithKline, Avon Mexico, Pfizer, Susan G Komen for the Cure, NADRO, Chinnoin Pharmaceutical Products, Sanofi, and Roche; and reports non-financial support from PISA and Grunenthal. All other authors declare no competing interests.

Acknowledgments
We thank George Alleyne for helpful comments on an earlier draft. The Bill & Melinda Gates Foundation provides financial support for the Disease Control Priorities Network project, of which this volume is a part. We received funding from the US National Cancer Institute, Canadian Institutes of Health Research (grant 126347), and Centre for Global Health Research.

References

