Annex 14A. Estimates of Parasitemia and Clinical Disease among School-Aged Children in Africa

Supplemental material for: Brooker, S.J., S. Clarke, D. Fernando, C.W. Gitonga, J. Nankabirwa, and others. 2017. "Malaria in Middle Childhood and Adolescence." In *Disease Control Priorities* (third edition), Volume 8, *Child and Adolescent Health and Development*, edited by D.A.P Bundy, N. de Silva, S. Horton, D.T. Jamison, and G.C Patton. Washington DC: World Bank.

Table 14A.1 Studies on the Prevalence of Malaria Parasitemia among Schoolchildren, 1998-2013

Country	Transmission setting	Age range (years)	Diagnostic method	Survey transmission season	Year of survey	Estimated prevalence (percent)	Source
East Africa			Microscopy	Not specified			
Uganda	High	8–14			2008	51	Nankabirwa and others 2010
	High	5–9	Microscopy	High transmission	2008	64	Pullan and others 2010
	Moderate	10–12	Microscopy	Not specified	2009–10	46	Kabatereine and others 2011
	High	6–14	Microscopy	Not specified	2011	30	Nankabirwa and others 2013
	High	6–15			2012	56.5	Uganda Malaria Surveillance Project (unpublished)
	Moderate	6–15			2012	16	Uganda Malaria Surveillance Project (unpublished)
	Low	6–15			2012	14	Uganda Malaria Surveillance Project (unpublished)
Kenya	High	8-14	Microscopy	High transmission	2002	23	Clarke and others 2004
	Epidemic prone	8–14	Microscopy	High transmission	2002	47a	Clarke and others 2004

	High	5–18	Microscopy	High transmission	2005–06	41	Clarke and others 2008
	High	5–18	Microscopy	High transmission	2008-10	18	Gitonga and others 2012
	Seasonal	5–18	Microscopy	High transmission	2008–10	2	Gitonga and others 2012
	Moderate	5–18	Microscopy	High transmission	2008–10	3	Gitonga and others 2012
	Low	5–18	Microscopy	High transmission	2008–10	<1	Gitonga and others 2012
Tanzania	High	Mean 7.96	Microscopy		2005	35	Mboera and others 2011
	High	0.5–14	RDT (Paracheck Pf and CareStartTM)	High transmission	2011	9–23	West and others 2013
West Africa							
Senegal	Seasonal	<u>≤</u> 9	Microscopy	High	2004–05	9	Dia and others 2008
	Seasonal	6–14	Microscopy	Average of high and low transmission	2004–06	0.9	Ouldabdallahi and others 2011
	Moderate-high seasonal	7–14	Microscopy	High transmission	2011	54	Clarke and others 2012
The Gambia	Seasonal	6–12	Microscopy	High transmission	2008-09	17	Oduro and others 2013
	Seasonal	4–21	PCR	Low transmission	2011	14	Takem and others 2013
Côte d'Ivoire	High	5–9	Microscopy	Annual average	1998–99	66	Assi and others 2013
	High	6–10	Microscopy	Not specified	2001–02	67	Raso and others 2005
	High	6–14	Microscopy	Across transmission seasons	2006–07	58	Rohner and others 2010
Mali	High, seasonal	6–14	Microscopy	Annual average	2007–08	42	Thuilliez and others 2010
	High, seasonal	7–14	Microscopy	High transmission	2011	83	Clarke and others 2012
Nigeria	High	8–16	Microscopy	High transmission	2007–08	26	Ojurongbe and others 2011
Central Africa							

Cameroon	High	2–11			2002	30	Nkuo Akanji, Ajame, and Achidi 2002
	High	4–16	Microscopy	Not specified	2006	40	Wanji and others 2008
	High	4–12		_	2007	59	Achidi and others 2008
	High	4–15	Microscopy	High transmission	2009	34	Kimbi, Nformi, and Ndamukong 2013
Congo, Rep.	High	1–9	Microscopy		2010	16	Ibara-Okabande and others 2012
Equatorial Guinea	High	5–9	RDT	Not specified	2009–10	40	Rehman and others 2011
	High	10-14	RDT	Not specified	2009-10	42	Rehman and others 2011
Other parts of Africa							
Ethiopia	Low	5–16	Microscopy	High transmission	2009	0–15	Ashton and others 2011
Somalia	Low	5-14	RDT	Not specified	2007	20.5	Noor and others 2008
Mozambique	High	5–7	Microscopy	High transmission	2002–03	48.1	Mabunda and others 2008
Malawi	High	5–9	RDT	Not specified	2009-10	53	Rehman and others 2011
	High	10-14	RDT	Not specified	2009-10	52	Rehman and others 2011
	High	5-21	Microscopy	High transmission	2011	60	Mathanga and others 2015
	High	6-15	PCR	High transmission	2013	31	Walldorf and others 2015

Note: Recorded during an outbreak

 Table 14A.2 Recent Studies Reporting the Incidence of Malaria in School-Age Children in Africa

	Transmission			Follow-up	Sample	Age	Observed	Calculated annual incidence	
Location Year-round	setting I transmission	Year	Method	period	size	(years)	incidence	Episodes/child/yeara	Source
Uganda	High perennial	2011	Active case detection through daily roll call ^b	12 months	740	6–14	83 episodes/242.7 child-years at risk	0.34	Nankabirwa and others 2014
Kenya	High perennial	2002	Active case detection by visiting children 2 to 3 times per week	11 weeks	276	8–14	0.005/child- weeks at risk	0.26	Clarke and others 2004
Kenya	Epidemic prone	2002	Active case detection by visiting children 2 to 3 times per week	11 weeks	330	8–14	0.029/child- weeks at risk	0.49 during an epidemic outbreak	Clarke and others 2004
Ghana	Moderate	2002	Active case detection through weekly visits	9 months	352	6–10	0.22– 0.25/child/year	0.22-0.25	Dodoo and others 2008
Highly-sea	sonal transmissio	n							
Burkina Faso	High, seasonal	2003	Active case detection through daily visits	4 months	51	6–8	2.7/child-year at risk	2.7	Nebie and others 2008
					65	8–11	0.59/child-year at risk	0.59	Nebie and others 2008
					65	11–15	0.37/child-year at risk	0.37	Nebie and others 2008
Mali	High, Seasonal	2007– 08	Active case detection through monthly visits ^b	8 months	98	6–13	1.46/child-year at risk	1.46	Barger and others 2009

The Gambia	Seasonal	2008– 09	Active case detection through weekly visits	22 weeks	439	6–15	0.004/child- weeks at risk	0.025	Ceesay and others 2010
Other									
Ethiopia	Low	2009– 11	Active case detection through weekly visits and passive detection of cases between weekly visits	101 weeks	2,075	5–14	110/2,075 for 101 weeks	0.03	Loha and Lindtjørn 2012

Notes:

^a Calculation of the annual incidence assumes uniform incidence throughout the year for areas of perennial transmission; in areas of highly seasonal transmission where transmission is limited to a few months each year, total annual incidence is assumed to equate to that measured during the period of observation.

^b When data were collected during an intervention trial, incidence data refer to observations in the control arm.

References

- Achidi, E. A., T. O. Apinjoh, E. Mbunwe, R. Besingi, C. Yafi, and others. 2008. "Febrile Status, Malarial Parasitaemia and Gastro-Intestinal Helminthiases in Schoolchildren Resident at Different Altitudes, in South-Western Cameroon." Annals of Tropical Medicine and Parasitology 102 (2): 103–18.
- Ashton, R. A., T. Kefyalew, G. Tesfaye, R. L. Pullan, D. Yadeta, and others. 2011. "School-Based Surveys of Malaria in Oromia Regional State, Ethiopia: A Rapid Survey Method for Malaria in Low Transmission Settings." Malaria Journal 10: 25.
- Assi, S. B., M. C. Henry, C. Rogier, J. Dossou-Yovo, M. Audibert, and others. 2013. "Inland Valley Rice Production Systems and Malaria Infection and Disease in the Forest Region of Western Côte d'Ivoire." Malaria Journal 12: 233.
- Ceesay, S. J., C. Casals-Pascual, D. C. Nwakanma, M. Walther, N. Gomez-Escobar, and others. 2010. "Continued Decline of Malaria in The Gambia with Implications for Elimination." Malaria Journal 5 (8): e12242.
- Dia, I., L. Konate, B. Samb, J. B. Sarr, A. Dio, and others. 2008. "Bionomics of Malaria Vectors and Relationship with Malaria Transmission and Epidemiology in Three Physiographic Zones in the Senegal River Basin." Acta Tropica 105 (2): 145–53.
- Dodoo, D., A. Aikins, K. A. Kusi, H. Lamptey, E. Remarque, and others. 2008. "Cohort Study of the Association of Antibody Levels to AMA1, MSP119, MSP3 and GLURP with Protection from Clinical Malaria in Ghanaian Children." Malaria Journal 7: 142.
- Ibara-Okabande, R., F. Koukouikila-Koussounda, M. Ndounga, J. Vouvoungui,
 V. Malonga, and others. 2012. "Reduction of Multiplicity of Infections but No Change in msp2
 Genetic Diversity in Plasmodium falciparum Isolates from Congolese Children after Introduction of Artemisinin-Combination Therapy." Malaria Journal 11: 410.
- Kimbi, H. K., I. U. Sumbele, M. Nweboh, J. K. Anchang-Kimbi, E. Lum, and others. 2013. "Malaria and Haematologic Parameters of Pupils at Different Altitudes along the Slope of Mount Cameroon: A Cross-Sectional Study." Malaria Journal 12: 193.
- Loha, E., and B. Lindtjørn. 2012. "Predictors of Plasmodium falciparum Malaria Incidence in Chano Mille, South Ethiopia: A Longitudinal Study." American Journal of Tropical Medicine and Hygiene 87 (3): 450–59.
- Mabunda, S., S. Casimiro, L. Quinto, and P. Alonso. 2008. "A Country-Wide Malaria Survey in Mozambique. I. Plasmodium falciparum Infection in Children in Different Epidemiological Settings." Malaria Journal 7: 216.
- Mboera, L. E., K. P. Senkoro, S. F. Rumisha, B. K. Mayala, E. H. Shayo, and others. 2011. "Plasmodium falciparum and Helminth Coinfections among Schoolchildren in Relation to Agro-Ecosystems in Mvomero District, Tanzania." Acta Tropica 120 (1–2): 95–110.
- Nankabirwa, J., B. Wandera, N. Kiwanuka, S. G. Staedke, M. R. Kamya, and others. 2013. "Asymptomatic Plasmodium Infection and Cognition among Primary Schoolchildren in a High

- Malaria Transmission Setting in Uganda." American Journal of Tropical Medicine and Hygiene 88 (6): 1102–8.
- Nebie, I., A. Diarra, A. Ouedraogo, I. Soulama, E. C. Bougouma, and others. 2008. "Humoral Responses to Plasmodium falciparum Blood-Stage Antigens and Association with Incidence of Clinical Malaria in Children Living in an Area of Seasonal Malaria Transmission in Burkina Faso, West Africa." Infection and Immunity 76 (2): 759–66
- Nkuo Akenji, T. K., E. A. Ajame, and E. A. Achidi. 2002. "An Investigation of Symptomatic Malaria Parasitaemia and Anaemia in Nursery and Primary School Children in Buea District Cameroon." Central African Journal of Medicine 48 (1–2): 1–4.
- Oduro, A. R., D. J. Conway, D. Schellenberg, J. Satoguina, B. M. Greenwood, and others. 2013. "Seroepidemiological and Parasitological Evaluation of the Heterogeneity of Malaria Infection in The Gambia." Malaria Journal 12: 222.
- Ojurongbe, O., A. M. Adegbayi, O. S. Bolaji, A. A. Akindele, O. A. Adefioye, and others. 2011. "Asymptomatic falciparum Malaria and Intestinal Helminths Co-Infection among School Children in Osogbo, Nigeria." Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences 16: 680–86.
- Ouldabdallahi, M., M. Ouldbezeid, M. Dieye, B. Yacine, and O. Faye. 2011. "Étude de la part du paludisme chez les consultants fébriles et des indices plasmodiques chez des écoliers dans la région du Trarza, République islamique de Mauritanie." [Study of the Incidence of Malaria in Febrile Patients and among Schoolchildren in the Region of Trarza, Islamic Republic of Mauritania] Bulletin de la Societe Pathologie Exotique 104 (4): 288–90.
- Raso, G., J. Utzinger, K. D. Silue, M. Ouattara, A. Yapi, and others. 2005. "Disparities in Parasitic Infections, Perceived Ill Health and Access to Health Care among Poorer and Less Poor Schoolchildren of Rural Côte d'Ivoire." Tropical Medicine and International Health 10 (1): 42–57.
- Rehman, A. M., M. Coleman, C. Schwabe, G. Baltazar, A. Matias, and others. 2011. "How Much Does Malaria Vector Control Quality Matter: The Epidemiological Impact of Holed Nets and Inadequate Indoor Residual Spraying." PLoS One 6: e19205.
- Takem, E. N., M. Affara, A. Amambua-Ngwa, J. Okebe, S. J. Ceesay, and others. 2013. "Detecting Foci of Malaria Transmission with School Surveys: A Pilot Study in The Gambia." PLoS One 8: 6
- Wanji, S., H. K. Kimbi, J. E. Eyong, and N. Tendongfor. 2008. "Performance and Usefulness of the Hexagon Rapid Diagnostic Test in Children with Asymptomatic Malaria Living in the Mount Cameroon Region." Malaria Journal 7: 89.